精英家教网 > 高中数学 > 题目详情
(2013•嘉兴一模)已知在正项等比数列{an}中,a1=1,a2a4=16,则|a1-12|+|a2-12|+…+|a8-12|=(  )
分析:利用等比数列的通项公式即可得出公比q,得到通项公式.判断an≤12成立时n的值,即可去掉绝对值符号,再利用等比数列的前n项和公式即可得出.
解答:解:设正项等比数列{an}的公比为q>0,∵a1=1,a2a4=16,∴q4=16,解得q=2.
an=1×2n-1=2n-1
由2n-1≤12,解得n≤4.
∴|a1-12|+|a2-12|+…+|a8-12|=12-a1+12-a2+12-a3+12-a4+a5-12+…+a8-12
=-2(a1+a2+a3+a4)+(a1+a2+…+a8
=-
24-1
2-1
+
28-1
2-1

=-2(24-1)+28-1
=225.
故选B.
点评:判断an≤12成立时n的值正确去掉绝对值符号,熟练掌握等比数列的通项公式、等比数列的前n项和公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉兴一模)如图,直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=
2
,AD=BD:EC丄底面ABCD,FD丄底面ABCD 且有EC=FD=2.
(Ⅰ)求证:AD丄BF;
(Ⅱ)若线段EC的中点为M,求直线AM与平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知a,b∈R,ab≠O,则“a>0,b>0”是“
a+b
2
ab
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)一个几何体的三视图如图所示,则该几何体的体积为
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知函数f(x)=
1
2
x2-(2a+2)x+(2a+1)lnx

(I )求f(x)的单调区间;
(II)对任意的a∈[
3
2
5
2
],x1x2∈[1,2]
,恒有|f(x1)|-f(x2)≤λ|
1
x1
-
1
x2
|
,求正实数λ的取值范围.

查看答案和解析>>

同步练习册答案