分析 (1)根据f(x)>0的解集,求出a,b,c的关系,从而求出不等式的解集;
(2)由f(x)≥2ax+b恒成立,得到a>0,b2+4a2≤4ac,将$\frac{4a(c-a)}{{a}^{2}+{c}^{2}}$变形为$\frac{4(\frac{c}{a}-1)}{1{+(\frac{c}{a})}^{2}}$,令t=$\frac{c}{a}$-1,从而构造出函数g(t),求出g(t)的最大值即可.
解答 解:$(1)∵a{x^2}+bx+c>0_{\;}^{\;}的解集为_{\;}^{\;}\left\{{x|-3<x<4}\right\}$,
∴$a<0,-3+4=-\frac{b}{a},-3×4=\frac{c}{a}⇒b=-a,c=-12a({a<0})$.
∴bx2+2ax-(c+3b)<0?-ax2+2ax+15a<0(a<0)
?x2-2x-15<0,
∴解集为(-3,5).
$(2)_{\;}^{\;}∵f(x)≥2ax+b?a{x^2}+({b-2a})x+c-b≥0恒成立$,
∴$\left\{\begin{array}{l}a>0\\△={({b-2a})^2}-4a({c-b})≤0\end{array}\right.?\left\{\begin{array}{l}a>0\\{b^2}+4{a^2}-4ac≤0\end{array}\right.$,
∴$0≤{b^2}≤4a({c-a}),_{\;}^{\;}∵\frac{{4a({c-a})}}{{{a^2}+{c^2}}}=\frac{{4({\frac{c}{a}-1})}}{{1+{{({\frac{c}{a}})}^2}}}$,
$令_{\;}^{\;}t=\frac{c}{a}-1$,∵4a(c-a)≥b2≥0,
∴$c≥a>0⇒\frac{c}{a}≥1⇒t≥0$.
$\frac{{4a({c-a})}}{{{a^2}+{c^2}}}=\frac{4t}{{1+{{({t+1})}^2}}}=\frac{4t}{{{t^2}+2t+2}},令g(t)=\frac{4t}{{{t^2}+2t+2}}({t≥0})$,
$当_{\;}^{\;}t=0_{\;}^{\;}时,g(0)=0;当_{\;}^{\;}t>0_{\;}^{\;}时,g(t)=\frac{4}{{t+\frac{2}{t}+2}}≤\frac{4}{{2\sqrt{2}+2}}=2\sqrt{2}-2$,
∴$\frac{{4a({c-a})}}{{{a^2}+{c^2}}}_{\;}^{\;}的最大值为_{\;}^{\;}2\sqrt{2}-2$.
点评 本题考查了二次函数的性质,不等式问题,考查函数恒成立以及转化思想,求函数的最值问题,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{52}$ | B. | $\frac{1}{13}$ | C. | $\frac{1}{26}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com