精英家教网 > 高中数学 > 题目详情
2.已知二次函数f(x)=ax2+bx+c.
(1)若f(x)>0的解集为{x|-3<x<4},解关于x的不等式bx2+2ax-(c+3b)<0.
(2)若对任意x∈R,不等式f(x)≥2ax+b恒成立,求$\frac{4a(c-a)}{{a}^{2}+{c}^{2}}$的最大值.

分析 (1)根据f(x)>0的解集,求出a,b,c的关系,从而求出不等式的解集;
(2)由f(x)≥2ax+b恒成立,得到a>0,b2+4a2≤4ac,将$\frac{4a(c-a)}{{a}^{2}+{c}^{2}}$变形为$\frac{4(\frac{c}{a}-1)}{1{+(\frac{c}{a})}^{2}}$,令t=$\frac{c}{a}$-1,从而构造出函数g(t),求出g(t)的最大值即可.

解答 解:$(1)∵a{x^2}+bx+c>0_{\;}^{\;}的解集为_{\;}^{\;}\left\{{x|-3<x<4}\right\}$,
∴$a<0,-3+4=-\frac{b}{a},-3×4=\frac{c}{a}⇒b=-a,c=-12a({a<0})$.
∴bx2+2ax-(c+3b)<0?-ax2+2ax+15a<0(a<0)
?x2-2x-15<0,
∴解集为(-3,5).
$(2)_{\;}^{\;}∵f(x)≥2ax+b?a{x^2}+({b-2a})x+c-b≥0恒成立$,
∴$\left\{\begin{array}{l}a>0\\△={({b-2a})^2}-4a({c-b})≤0\end{array}\right.?\left\{\begin{array}{l}a>0\\{b^2}+4{a^2}-4ac≤0\end{array}\right.$,
∴$0≤{b^2}≤4a({c-a}),_{\;}^{\;}∵\frac{{4a({c-a})}}{{{a^2}+{c^2}}}=\frac{{4({\frac{c}{a}-1})}}{{1+{{({\frac{c}{a}})}^2}}}$,
$令_{\;}^{\;}t=\frac{c}{a}-1$,∵4a(c-a)≥b2≥0,
∴$c≥a>0⇒\frac{c}{a}≥1⇒t≥0$.
$\frac{{4a({c-a})}}{{{a^2}+{c^2}}}=\frac{4t}{{1+{{({t+1})}^2}}}=\frac{4t}{{{t^2}+2t+2}},令g(t)=\frac{4t}{{{t^2}+2t+2}}({t≥0})$,
$当_{\;}^{\;}t=0_{\;}^{\;}时,g(0)=0;当_{\;}^{\;}t>0_{\;}^{\;}时,g(t)=\frac{4}{{t+\frac{2}{t}+2}}≤\frac{4}{{2\sqrt{2}+2}}=2\sqrt{2}-2$,
∴$\frac{{4a({c-a})}}{{{a^2}+{c^2}}}_{\;}^{\;}的最大值为_{\;}^{\;}2\sqrt{2}-2$.

点评 本题考查了二次函数的性质,不等式问题,考查函数恒成立以及转化思想,求函数的最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.过点($\sqrt{2}$,$\frac{π}{4}$)且与极轴平行的直线的极坐标方程是ρ•sinθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等比数列{an}中,已知a3=8,a7=2,则a5的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛掷两枚骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X的期望是$\frac{50}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三视图如图的多面体中,最大的一个面的面积为(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.3D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-x-2<0},B={x|x-1≤0},则A∩B=(  )
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow{e_1},\overrightarrow{e_2}$为单位向量,其中$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_2}$,且$\overrightarrow a•\overrightarrow b=2$,则$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,$|\overrightarrow a|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到Q的概率为(  )
A.$\frac{1}{52}$B.$\frac{1}{13}$C.$\frac{1}{26}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在${x_{\;}}{(\sqrt{x}-\frac{1}{x})^9}$的展开式中,x的系数为-84.(用数字填写答案)

查看答案和解析>>

同步练习册答案