精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

【答案】D

【解析】∵对于任意的xR,都有f(x2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.

又∵当x[2,0],f(x)= 1,且函数f(x)是定义在R上的偶函数,

若在区间(2,6]内关于x的方程恰有3个不同的实数解,

则函数y=f(x)y=在区间(2,6]上有三个不同的交点,如下图所示:

f(2)=f(2)=3,

则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3

<3,>3,由此解得: <a<2

故答案为:(,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2-ax+a)e-x,a∈R

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)设g(x)=f’(x),其中f’(x)为函数f(x)的导函数.判断g(x)在定义域内是否为单调函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系中,已直曲线,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线,且直线C1交于AB两点,

1求曲线C1的直角坐标方程,并说明它是什么曲线;

2)设定点, 求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为4,焦距为

求椭圆的方程;

过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点轴的垂线交于另一点,延长于点.

设直线的斜率分别为,证明为定值;

求直线的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求函数的单调区间;

(Ⅱ)设,其中为函数的导函数.判断在定义域内是否为单调函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}各项均为正数其前n项和为Sna11anan12Sn.(nN*)

()求数列{an}的通项公式;

()求数列{n·}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求曲线处的切线方程.

)求的单调区间.

)设,其中,证明:函数仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:

指数

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

4

13

18

30

20

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元. 

(1)试写出的表达式;

(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?

非严重污染

严重污染

合计

供暖季

非供暖季

合计

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

同步练习册答案