精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,EF分别是ABPC的中点,PAAD.

求证:(1)CD⊥PD(2)EF⊥平面PCD.

【答案】1)见解析;(2)见解析.

【解析】

试题1)证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等; (2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.

试题解析:(1)∵PA⊥底面ABCD平面ABCD

∴CD⊥PA.

又矩形ABCD中,CD⊥AD

∵AD∩PAA平面PAD平面PAD

∴CD⊥平面PAD

平面PAD∴CD⊥PD.

(2)PD的中点G,连结AGFG.∵GF分别是PDPC的中点,

四边形AEFG是平行四边形,

∴AG∥EF.

∵PAADGPD的中点,

∴AG⊥PD∴EF⊥PD

∵CD⊥平面PADAG平面PAD.

∴CD⊥AG.∴EF⊥CD.

∵PD∩CDD平面PCDCD平面PCD

∴EF⊥平面PCD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险的基准保费为元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费基准保费与道路交通事故相联系的浮动比率),具体情况如下表:

为了解某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:

类型

数量

若以这辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系自然对数的底数,kb为常数),若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.

2)某药厂生产一种口服液,按药品标准要求其杂质含量不能超过0.01%,若初始时含杂质0.2%,每次过滤可使杂质含量减少三分之一,问至少应过滤几次才能使得这种液体达到要求?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中在今年的期末考试历史成绩中随机抽取名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在中的学生有1名,若从成绩在两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在中的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数对任意都有时,则方程的解为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=fx)﹣3

1)判断并证明函数gx)的奇偶性;

2)判断并证明函数gx)在(1+∞)上的单调性;

3)若fm22m+7f2m24m+4)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案