精英家教网 > 高中数学 > 题目详情
18.如果袋中有六个红球,四个白球,从中任取一球,确认颜色后放回,重复摸取四次,设X为取得红球的次数,那么X的均值为(  )
A.$\frac{3}{4}$B.$\frac{12}{5}$C.$\frac{19}{7}$D.$\frac{1}{3}$

分析 求出每次取得红球的概率,找出取得红球次数X的可能值,求出随机变量ξ服从二项分布ξ~B(4,$\frac{3}{5}$),即E(ξ),即为X的均值.

解答 解:采用有放回的取球,每次取得红球的概率都相等,均为$\frac{3}{5}$,
取得红球次数X可能取的值为0,1,2,3,4,
由以上分析,知随机变量ξ服从二项分布ξ~B(4,$\frac{3}{5}$),
∴E(ξ)=4×$\frac{3}{5}$=$\frac{12}{5}$,
则X的均值为$\frac{12}{5}$,
故选:B.

点评 此题考查了离散型随机变量的期望与方差,离散型随机变量的期望表征了随机变量取值的平均值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,E为矩形ABCD所在平面外一点,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)G为矩形ABCD对角线的交点,求三棱锥C-BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知不等式$\frac{x+7}{x+3}$≥2的解集为A,关于x的不等式ax2-(2a+1)x+2>0的解集为B.
(1)若A∪B={x|-3<x<2},求实数a的取值范围;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在棱锥P-ABC中,侧棱PA,PB,PC两两垂直,若已知PA=3,PB=4,PC=5则三棱锥P-ABC的外接球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出如下四个命题:
①方程x2+y2-2x+1=0表示的图形是圆;
②椭圆$\frac{x^2}{3}+\frac{y^2}{2}$=1的离心率e=$\frac{{\sqrt{5}}}{3}$;
③抛物线x=2y2的准线的方程是x=-$\frac{1}{8}$;
④双曲线$\frac{x^2}{49}-\frac{y^2}{25}$=1的渐近线方程是y=±$\frac{5}{7}$x.
其中所有不正确命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正四面体S-ABC中,其棱长为2.
(1)求该几何体的体积;
(2)已知M,N分别是棱AB和SC的中点.求直线BN和直线SM所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个结论,其中正确的有(  )个.
①已知(1-2x)7=a0+a1x+a2x2+…+a7x7,则a1+a2+…+a7=-3;
②过原点作曲线y=ex的切线,则切线方程为ex-y=0(其中e为自然对数的底数);
③已知随机变量X~N(3,1),且P(2≤X≤4)=0.6862,则P(X>4)=0.1587
④已知n为正偶数,用数学归纳法证明等式1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,若假设n=k(k≥2)时,命题为真,则还需利用归纳假设再证明n=k+1时等式成立,即可证明等式对一切正偶数n都成立.
⑤在回归分析中,常用R2来刻画回归效果,在线性回归模型中,R2表示解释变量对于预报变量变化的贡献率,R2越接近1,表示回归的效果越好.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
参考数据($\sum_{i=1}^{5}$xi2=145,$\sum_{i=1}^{5}$yi2=13500,$\sum_{i=1}^{5}$xiyi=1380.)$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$
(1)求线性回归方程;
(2)试预测广告费支出为10百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两数$\sqrt{2}+1$与$\sqrt{2}-1$的等比中项是(  )
A.1B.-1C.-1或1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案