精英家教网 > 高中数学 > 题目详情
1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且短轴长为2,F1,F2是左右焦点,O为坐标原点.
(1)求椭圆的标准方程;
(2)圆O是以F1,F2为直径的圆,直线l:y=kx+m与圆O相切,且与椭圆交于A,B两点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$,求k的值.

分析 (1)短轴长2b=2,即b=1,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,解得:a=$\sqrt{2}$,b=1,即可求得椭圆的标准方程;
(2)以F1,F2为直径的圆,x2+y2=1,由直线l:y=kx+m与圆O相切,则$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=1,即m2=1+k2,将直线l代入椭圆方程,利用韦达定理及向量数量积的坐标运算即可求得:$\frac{1+{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$,即可求得k的值.

解答 解:(1)椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,短轴长2b=2,即b=1,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
又a2=b2+c2,解得:a=$\sqrt{2}$,b=1,
∴椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)由(1)可知:丨F1F2丨=2c=2,则以F1,F2为直径的圆,x2+y2=1,
由直线l:y=kx+m与圆O相切,则$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=1,即m2=1+k2
设A(x1,y1),B(x2,y2
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消去y得,(1+2k2)x2+4mkx+2m2-2=0,
由直线与椭圆有两个不同的交点,
即有△>0,即(4km)2-4(1+2k2)(2m2-2)>0,
解得:k2>0,
又x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{1-{k}^{2}}{1+2{k}^{2}}$,
则$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+$\frac{1-{k}^{2}}{1+2{k}^{2}}$=$\frac{1+{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$,解得:k=±1.
∴k的值±1.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在正三棱锥P-ABC中,D,E分别是AB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{2}}{2}$,顺次连接椭圆四个顶点所得四边形的面积为2$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于M,N两点,O为原点,若点O在以MN为直径的圆上,试求点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于(  )
A.B.{1,2}C.[0,3)D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆7x2+3y2=21上一点到两个焦点的距离之和为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.斜率为1的直线与抛物线y=ax2(a>0)交于A、B两点,且线段AB的中点C到y轴的距离为1,则该抛物线焦点到准线的距离为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$<1”的否定是(  )
A.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$>1B.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$≥1
C.?x∈R,x2+sinx+ex>1D.?x∈R,x2+sinx+ex≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线x-y=0的斜率是(  )
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知p:x=1,q:x2-3x+2=0,则p是q的充分不必要条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选出适当的一种填空)

查看答案和解析>>

同步练习册答案