【题目】已知为坐标原点, 是椭圆上的点,设动点满足.
(1)求动点的轨迹的方程;
(2)若直线与曲线相交于, 两个不同点,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)设点,,则由 ,得,利用“逆代法”可得动点的轨迹的方程;(2)直线与曲线,联立可得,,根据韦达定理,弦长公式、点到直线距离公式将面积用 表示,利用基本不等式 即可得结.
试题解析:(1)设点,,则由,得,即,,因为点在椭圆,所以,故,即动点的轨迹的方程为.
(2)由曲线与直线联立得,消得,因为直线与曲线交于, 两点,所以,又,所以.
设, ,则, ,因为点到直线: 的距离, ,所以 ,,当且仅当,即时取等号,所以面积的最大值为.
【方法点晴】本题主要考查逆代法求曲线方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最大值的.
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是( )
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)判断函数f(x)在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求函数f(x)在区间[2,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为 8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com