【题目】高考数学考试中有12道选择题,每道选择题有4个选项,其中有且仅有一个是正确的.评分标准规定:在每小题给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分.某考生每道选择题都选出一个答案,能确定其中有8道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题能判断出一个选项是错误的,还有一道题因不理解题意只能乱猜.试求该考生的选择题:
(1)得60分的概率;
(2)得多少分的概率最大?
【答案】(1)(2)该生选择题得分为45分或50分的概率最大.
【解析】
(1)先计算有两道题答对的概率各为,有一道题答对的概率为,还有一道题答对的概率为, 利用独立事件的概率公式即得解;
(2)该考生选择题得分的可能取值有:40,45,50,55,60共5种,利用事件的独立性,依次计算对应概率,比较即得解.
(1)要得60分,必须12道选择题全答对,
依题意,易知在其余四道题中,有两道题答对的概率各为,有一道题答对的概率为,还有一道题答对的概率为,
所以他做选择题得60分的概率为:.
(2)依题意,该考生选择题得分的可能取值有:40,45,50,55,60共5种.
得分为40,表示只做对有把握的那8道题,其余各题都做错,于是其概率为:.
得45分的概率为:.
得分为50的概率:;
得分为55的概率:;
得分为60的概率:.
∴该生选择题得分为45分或50分的概率最大.
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)若,证明:函数在区间上是单调增函数;
(2)求函数在区间上的最大值;
(3)若函数的图像过原点,且的导数,当时,函数过点的切线至少有2条,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,抛物线的准线与椭圆交于两点,过线段上的动点作斜率为正的直线与抛物线相切,且交椭圆于两点.
(Ⅰ)求线段的长及直线斜率的取值范围;
(Ⅱ)若,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中a,b,c成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列和等比数列,其中的公差不为0.设是数列的前项和.若,,是数列的前3项,且.
(1)求数列和的通项公式;
(2)是否存在常数,使得为等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,底面为矩形,,,,.为棱上一点,平面与棱交于点.
(1)求证:;
(2)若,试问平面是否可能与平面垂直?若能,求出的值;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com