精英家教网 > 高中数学 > 题目详情

【题目】已知一个几何体的三视图如图所示.

1)求此几何体的表面积;

2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长.

【答案】1;(2.

【解析】试题分析:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.利用面积公式分别求面积然后相加得到表面积;(2)沿点与点所在母线剪开圆柱侧面,展开图为矩形,最短距离为对角线.

试题解析:

1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、

圆柱的侧面积和圆柱的一个底面积之和.

所以.

2)沿点与点所在母线剪开圆柱侧面,如图

所以从点到点在侧面上的最短路径的长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在区间上的函数,如果对任意,都有成立,则称在区间上可被替代, 称为“替代区间”.给出以下问题:

在区间上可被替代;

②如果在区间可被替代,则

③设,则存在实数及区间, 使得在区间上被替代.

其中真命题是

A. ①②③ B. ②③ C. ①③ D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC所对的边分别为a,b,c,已知

(1)求角B的大小;

(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=cos2x的图象,只需将y=cos(2x+ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形中, ,将沿折起,使平面平面,构成四面体,则在四面体中,下列说法不正确的是( ).

A. 直线直线 B. 直线直线

C. 直线平面 D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.若 ,则 =0
B.若 = ,则 =
C.若 ,则
D.若 是单位向量,则 =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcosx将 f(x)的图象向右平移 (0<φ<π) 个单位,得到y=g(x)图象且g(x)的一条对称轴是直线x=
(1)求φ;
(2)求函数y=g(x)的单调增区间.

查看答案和解析>>

同步练习册答案