精英家教网 > 高中数学 > 题目详情

【题目】“a=﹣1”是“直线ax+3y+2=0与直线x+(a﹣2)y+1=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

【答案】A
【解析】解:若a=﹣1,则两条直线方程分别为﹣x+3y+2=0与x﹣y+1=0此时两直线平行,即充分性成立,

若两直线平行,则ax+3y+2=0的斜截式方程为y=﹣ x﹣ ,则直线斜率k=﹣

x+(a﹣2)y+1=0的斜截式方程为为y=﹣ x﹣ ,(a≠2)

若两直线平行则﹣ =﹣ ,且﹣ ≠﹣

由﹣ =﹣ ,得a(a﹣2)=3,即a2﹣2a﹣3=0得a=﹣1或a=3,

由﹣ ≠﹣ 得a≠

即“a=﹣1”是“直线ax+3y+2=0与直线x+(a﹣2)y+1=0平行”的充分不必要条件,

所以答案是:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,圆

(1)求证:直线与圆总相交;

(2)求出相交的弦长的最小值及相应的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.
(1)当l的斜率是时, ,求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A的坐标为(4,1),点B(﹣7,﹣2)关于直线y=x的对称点为C.
(Ⅰ)求以A、C为直径的圆E的方程;
(Ⅱ)设经过点A的直线l与圆E的另一个交点为D,|AD|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥A﹣BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F为AC的中点,AB=BC=2,BE=

(Ⅰ)证明:EF⊥BD;
(Ⅱ)在线段AE上是否存在一点G,使得二面角D﹣BG﹣E的大小为 ?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数.

)若,求的取值范围.

)若对任意的都有不等式成立,求的值.

)在()的条件下,若函数的图像与轴恰有三个相异的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)为f(x)的导函数,求g(x)单调区间;
(2)已知函数f(x)在x=1处取得极大值,求实数a取值范围.

查看答案和解析>>

同步练习册答案