精英家教网 > 高中数学 > 题目详情
设集合M={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合M到N的函数关系的有(  ) 
A、0个B、1个C、2个D、3个
考点:函数的概念及其构成要素
专题:函数的性质及应用
分析:根据集合M到N的函数关系分别进行判断即可.
解答: 解:(1).函数的定义域为[0,1],而集合M={x|0≤x≤2},∴(1)不能表示集合M到N的函数关系.
(2).函数的定义域为[0,2],值域为[0,3],而N={y|0≤y≤2},∴(2)不能表示集合M到N的函数关系.
(3).函数的定义域为[0,2],值域为[0,2],而M={x|0≤x≤2},N={y|0≤y≤2},∴(3)满能表示集合M到N的函数关系
(4).函数的定义域为[0,2],值域为[0,2],此时一个x有两个y值和x对应,∴(4)不能表示集合M到N的函数关系.
故选B.
点评:本题主要考查函数的定义域,要求熟练掌握函数的定义,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=loga(1+ax)-loga(1-ax),其中a>0,且a≠1,
(1)当a=2时,解不等式f(x)-1>0;
(2)当a>1时,若关于x的不等式f(x)≥log
 
(8x)
a
(a>1)恒成立,求a的取值范围;
(3)若f(x0)=x0-1,证明|x0|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的双曲线方程.
(1)焦点在y轴上,且过点(3,-4
2
)、(
9
4
,5).
(2)已知双曲线的渐近线方程为2x±3y=0,且双曲线经过点P(
6
,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

用三种不同的颜色,将如图所示的4个区域涂色,每种颜色至少用1次,则相邻的区域不涂同一种颜色的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足
x≥0
x-2y≥0
2x-y-3≤0

(Ⅰ)求z=
y
x+1
的取值范围;
(Ⅱ)若函数z=ax+by(a>0,b>0)的最大值为3,求t=a•(1+b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程为
x=3+3cosθ
y=3sinθ
(θ是参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=
π
4
(ρ∈R),曲线C与直线l相交于点A、B.
(Ⅰ) 将曲线C的方程化为普通方程,直线l的极坐标方程化为直角坐标方程;
(Ⅱ) 求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班关注NBA是否与性别有关,对本班 48人进行了问卷调查得到如下的列联表:
关注NBA不关注NBA合   计
男    生6
女    生10
合    计48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为
2
3

(1)请将上面列连表补充完整(不用写计算过程);
(2)判断是否有95%的把握认为关注NBA与性别有关?说明你的理由.
下列的临界值表,供参考
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
)其中 n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin2x,cosx),
n
=(
3
,2cosx)(x∈R),f(x)=
m
n
-1,
(1)求f(x)的单调递增区间.
(2)求f(x)在[0,
π
3
]的最大值和最小值.

查看答案和解析>>

同步练习册答案