精英家教网 > 高中数学 > 题目详情
6.若不等式mx2-mx+2>0对一切实数x恒成立,则实数m的取值范围是(  )
A.(0,8)B.[0,8]C.[0,8)D.(0,8]

分析 当m=0时,易知不等式恒成立,当m≠0时,可得$\left\{\begin{array}{l}{m>0}\\{△=(-m)^{2}-4m•2<0}\end{array}\right.$,从而解得.

解答 解:当m=0时,mx2-mx+2>0可化为2>0,成立;
当m≠0时,$\left\{\begin{array}{l}{m>0}\\{△=(-m)^{2}-4m•2<0}\end{array}\right.$,
解得0<m<8,
综上所述,
实数m的取值范围是[0,8),
故选C.

点评 本题考查了分类讨论的思想应用及恒成立问题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C的标准方程为(x-5)2+(y-6)2=a2
(1)若点M(6,9)在圆上,求a的值;
(2)已知点P(3,3)和点Q(5,3)有一点在圆内,另一点在圆外,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={1,2,3,4},B={x|x=2n,n∈A},则A∩B=(  )
A.{1,4}B.{1,3}C.{2,4}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合P={x|x2-x-2≤0},M={-1,0,3,4},则集合P∩M中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(1,1),点A(3,0),点B为直线y=2x上的一个动点.若$\overrightarrow{AB}$∥$\overrightarrow{a}$,则点B的坐标为(-3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=cos2x-sin2x,下列结论中错误的是(  )
A.f(x)=cos2xB.f(x)的最小正周期为π
C.f(x)的图象关于直线x=0对称D.f(x)的值域为[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x为实数,用[x]表示不超过x的最大整数,例如[1.2]=1,[-1.2]=2,[1]=1.对于函数f(x),若存在m∈R且m≠Z,使得f(m)=f([m]),则称函数f(x)是Ω函数.
(Ⅰ)判断函数f(x)=x2-$\frac{1}{3}$x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)已知f(x)=x+$\frac{a}{x}$,请写出a的一个值,使得f(x)为Ω函数,并给出证明;
(Ⅲ)设函数f(x)是定义在R上的周期函数,其最小周期为T.若f(x)不是Ω函数,求T的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,PA⊥平面ABCD,ABCD是矩形,M、N分别是AB,PC的中点.
(1)求证:MN⊥AB;
(2)若PA=AD,求证:平面MND⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知M是△ABC内一点,且$\overrightarrow{AB}•\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,若△MBC、△MAB、△MAC的面积分别为$\frac{1}{2}$、x、y.
(1)求△ABC的面积S的值;
(I2)求$\frac{1}{x}+\frac{4}{y}$的最小值.

查看答案和解析>>

同步练习册答案