【题目】若函数y=e(a﹣1)x+4x(x∈R)有大于零的极值点,则实数a范围是( )
A.a>﹣3
B.a<﹣3
C.
D.
【答案】B
【解析】解:因为函数y=e(a﹣1)x+4x, 所以y′=(a﹣1)e(a﹣1)x+4(a<1),
所以函数的极值点为x0= ,
因为函数y=e(a﹣1)x+4x(x∈R)有大于零的极值点,
所以x0= >0,即 <0,
解得:a<﹣3.
故选B.
【考点精析】通过灵活运用函数的零点与方程根的关系,掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是( )
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分别是AC、BC中点.
(1)求证:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α﹣y轴﹣β的大小等于30°.已知β内的曲线C′的方程是3(x﹣2 )2+4y2﹣36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交MF2于点P.
(1)当点M变化时,求动点P的轨迹G的方程;
(2)设直线l:y=kx+m与轨迹G交于M、N两点,直线F2M与F2N的倾斜角分别为α、β,且α+β=π,求证:直线l经过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),则函数y=f2017(x)的图象与曲线 的交点坐标为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求证:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com