精英家教网 > 高中数学 > 题目详情
4.等差数列{an}、{bn}中的前n项和分别为Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{10}}{{b}_{10}}$=(  )
A.$\frac{20}{31}$B.$\frac{19}{29}$C.$\frac{17}{28}$D.$\frac{16}{27}$

分析 由等差数列的性质得$\frac{{a}_{10}}{{b}_{10}}$=$\frac{\frac{19}{2}({a}_{1}+{a}_{19})}{\frac{19}{2}({b}_{1}+{b}_{19})}$=$\frac{{S}_{19}}{{T}_{19}}$,由此能求出结果.

解答 解:∵等差数列{an}、{bn}中的前n项和分别为Sn、Tn,$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,
∴$\frac{{a}_{10}}{{b}_{10}}$=$\frac{2{a}_{10}}{2{b}_{10}}$=$\frac{\frac{19}{2}({a}_{1}+{a}_{19})}{\frac{19}{2}({b}_{1}+{b}_{19})}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{2×19}{3×19+1}$=$\frac{19}{29}$.
故选:B.

点评 本题考查两个等差数列的等10项比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个内角A,B,C成等差数列,其角A,B,C的对边分别为a,b,c,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个母线长为6的圆锥(如图)的底部圆周上有一昆虫(M点),如果它沿着圆锥的侧面爬行一周回到原来的位置的最短路程恰好为6,那么该圆锥的底面半径是多少?圆锥的高是多少?请求出该圆锥的侧面积与体积.(提示:平面上两点间的线段最短)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“a和b都不是奇数”的否定是(  )
A.a和b至少有一个奇数B.a和b至多有一个是奇数
C.a是奇数,b不是奇数D.a和b都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.命题P:存在实数x,x2-2cx+c<0;命题Q:|x-1|-x+2c>0对任意x∈R恒成立.若P或Q为真,P且Q为假,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=3,AC=6,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  ) 
A.8B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=(1+x)2-mln(1+x),g(x)=x2+x+a.
(Ⅰ)当a=0时,f(x)≥g(x)在(0,+∞)上恒成立,求实数m的取值范围;
(Ⅱ)当m=2时,若函数h(x)=f(x)-g(x)在[0,2]上恰有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司生产一种商品的固定成本为200元,每生产一件商品需增加投入10元,已知总收益满足函数:g(x)=$\left\{\begin{array}{l}{40x-\frac{1}{2}{x}^{2},0≤x≤40}\\{800,x>40}\end{array}\right.$其中x是商品的月产量.
(1)将利润表示为月产量的函数f(x)(总收益=总成本+利润);
(2)当月产量为何值时公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}m{x^2}-8ax+n,x<1\\ log_a^x\begin{array}{l}{\begin{array}{l},{x≥1}\end{array}}\end{array}\end{array}\right.$,其中m为函数$g(x)=2x+\sqrt{x-1}$的最小值,n为函数$h(x)={3^{1-{x^2}}}$的最大值,且对任意x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_1}-{x_2}}}>0$成立,则实数a的取值范围是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.$[\frac{5}{8},1)$D.$[\frac{1}{2},\frac{5}{8}]$

查看答案和解析>>

同步练习册答案