精英家教网 > 高中数学 > 题目详情
17.已知圆C的圆心为点D(2,3),且与y轴相切,直线y=kx-1与圆C交于M,N两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若DM⊥DN,求k的值.

分析 (Ⅰ)求出圆的半径,即可求圆C的方程;
(Ⅱ)若DM⊥DN,|DM|=|DN|=r,所以△DMN为等腰直角三角形,因为r=2,则圆心D到直线y=kx-1的距离$d=\sqrt{2}$,即可求k的值.

解答 解:(Ⅰ)因为圆C的圆心为点D(2,3),且与y轴相切,
所以圆C的半径r=2.
则所求圆C的方程为(x-2)2+(y-3)2=4. …(5分)
(Ⅱ)因为DM⊥DN,|DM|=|DN|=r,所以△DMN为等腰直角三角形.
因为r=2,则圆心D到直线y=kx-1的距离$d=\sqrt{2}$.
则$\frac{|2k-3-1|}{{\sqrt{{k^2}+1}}}=\sqrt{2}$,解得k=1或k=7. …(9分)

点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知圆C:x2+y2-2x+4y=0,则圆C的半径为$\sqrt{5}$,过点(2,1)的直线中,被圆C截得弦长最长的直线方程为3x-y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线并且过椭圆的右焦点,记椭圆的离心率为e.
(1)求椭圆的离心率e的取值范围;
(1)若直线l的倾斜角为$\frac{π}{6}$,求e的大小;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上,若存在,请求出e的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=logax(a>0且a≠1)的图象经过点$(\;2\sqrt{2}\;,\;-1\;)$,函数y=bx(b>0且b≠1)的图象经过点$(\;1\;,\;2\sqrt{2})$,则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$D.(a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点$M(2,2\sqrt{6})$,点F为抛物线y2=2px(p>0)的焦点,点P是该抛物线上的一个动点.若|PF|+|PM|的最小值为5,则p的值为2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,则当实数a取最小值时,f[f(-2)]=(  )
A.-2B.4C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 甲 乙 丙 丁
人数 30 40 20 10
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(sinx)=cos3x,则f(cos10°)的值为(  )
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案