精英家教网 > 高中数学 > 题目详情
已知|
a
|=2|
b
|≠0
,且关于x的方程x2+|
a
|x+
a
b
=0
有两个不同的实数根,则
a
b
的夹角范围为(  )
分析:由题意可得,△=|
a
|
2
-4
a
b
>0
可得
a
b
1
4
|
a
|
2
,由已知|
a
|=2|
b
|≠0
,代入c0sθ=
a
b
|
a
||
b
|
1
4
|
a
 2
|
a
||
b
|

结合向量夹角的范围0<θ≤π可求.
解答:解:由关于x的方程x2+|
a
|x+
a
b
=0
有两个不同的实数根可得
△=|
a
|
2
-4
a
b
>0

a
b
1
4
|
a
|
2

|
a
|=2|
b
|≠0

c0sθ=
a
b
|
a
||
b
|
1
4
|
a
 2
|
a
||
b
|
=
|
b
|
2
2|
b
||
b
|
=
1
2

∵0<θ≤π
1
3
π<θ≤π

故选B.
点评:本题主要考查了向量夹角公式c0sθ=
a
b
|
a
||
b
|
的应用,要注意夹角的范围及余弦函数的单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|≠0
,且关于x的方程x2+|
a
|x+
a
b
=0
有实根,则
a
b
的夹角的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|
,命题p:关于x的方程x2+|
a
|x+
a
b
=0
没有实数根,命题q:
a
b
>∈[0,
π
4
]
,则命题p是命题q的
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2
 |
b
|=3
a
b
的夹角为60°,
c
=5
a
+3
b
d
=3
a
+k
b
,当实数k为何值时,
(1)
c
d
   
(2)
c
d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|≠0,且关于x的方程x2-|
a
|x+
a
b
=0有两个不同的正实数根,则
a
b
的夹角范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|
,命题p:关于x的方程x2+|
a
|x+
a
b
=0
没有实数根,命题q:
a
b
>∈[0,
π
4
]
,则命题p是命题q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案