精英家教网 > 高中数学 > 题目详情
若lg2=a,lg3=b,则lg
2
3
=
 
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的运算法则即可得出.
解答: 解:∵lg2=a,lg3=b,
则lg
2
3
=lg2-lg3=a-b.
故答案为:a-b.
点评:本题考查了对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c,d成等比数列,且曲线y=3x-x3的极大值点坐标为(b,c)则ad等于(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x2-1

(1)判断函数f(x)的奇偶性;
(2)函数f(x)在(0,1)上是增函数还是减函数;
(3)设函数g(x)=f(x)•(x+1),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lnx+2x-9存在唯一的零点x0,则大于x0的最小整数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则下列结论中正确的个数是(  )                        
①BD∥平面EFGH;
②AC∥平面EFGH;
③BD与平面EFGH相交;
④AC与平面EFGH相交;
⑤AB与平面EFGH相交.
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)lg
3
7
+lg70-lg3;
(2)lg22+lg5lg20-1;
(2)lg52+
2
3
lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四棱锥S-ABCD中,SA=
2
,AB=
3
,其中E、F分别是BC与SD的中点.
(1)求证:EF∥平面SAB;
(2)求异面直线EF与SC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+ax+b(a,b为常数)满足f(0)=f(2),方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式.
(2)当x∈[0,4]时,求函数f(x)的值域.
(3)当m取何值时,函数g(x)=f(x)+m在[0,4]上有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|
2x
x+2
<1},B={x||x-a|<1},且A∩B≠∅,则a的取值范围为
 

查看答案和解析>>

同步练习册答案