精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱ABOABO中,AOB=90°,侧棱OO′⊥OABOAOBOO′=2.C为线段OA的中点,在线段BB上求一点E,使|EC|最小.

【答案】z=1时,|EC|取得最小值为 ,此时E(0,2,1)为线段BB′的中点

【解析】试题分析:先根据条件建立空间直角坐标系,设立各点坐标,则根据两点间距离公式得|EC|,最后根据二次函数最值求法得最小值

试题解析:解 

如图所示,

以三棱原点,以OAOBOO′所在直线分别为x轴、y轴、z轴建立空间直角坐标系Oxyz

OAOBOO′=2,得A(2,0,0)、B(0,2,0)、O(0,0,0),A′(2,0,2)、B′(0,2,2)、O′(0,0,2).

C为线段OA的中点得C点坐标为(1,0,1),设E点坐标为(0,2,z),

∴|EC|=

故当z=1时,|EC|取得最小值为

此时E(0,2,1)为线段BB′的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是圆上的任意一点,点为圆的圆心,点与点关于平面直角系的坐标原点对称,线段的垂直平分线与线段交于点.

(1)求动点的轨迹的方程;

(2)若轨迹轴正半轴交于点,直线交轨迹两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:

①在函数的图象中,相邻两个对称中心的距离为;②函数的图象关于点对称;③“ ”是“”的必要不充分条件;④已知命题:对任意的,都有,则是:存在,使得;⑤在中,若 ,则角等于.其中所有真命题的个数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线l:m+3x-m+2y+m=0与圆C:x-32y-42=9.

1求证:无论m为何值,直线l总过定点A,并说明直线l与圆C总相交.

2m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是(
A.35
B.﹣3
C.3
D.﹣0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国标准采用世卫组织设定的最宽限值.即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;75微克/立方米以上空气质量为超标.

某市环保局从360天的市区监测数据中统计了1月至10月的每月的平均值(单位:微克/立方米),如下表所示.

月份

1

2

3

4

5

6

7

8

9

10

月均值

32

28

25

31

34

33

45

44

63

68

(1)从5月到10月的这6个数据中任取2个数值,求这个2个数值均为二级的概率;

(2)求月均值关于月份的回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在2060岁的问卷中随机抽取了100份, 统计结果如下面的图表所示.

年龄

分组

抽取份

答对全卷的人数

答对全卷的人数占本组的概率

[20,30)

40

28

0.7

[30,40)

n

27

0.9

[40,50)

10

4

b

[50,60]

20

a

0.1

(1)分别求出n, a, b, c的值;

(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 ,且圆心在直线.

1)求圆的标准方程;

2)直线过点且与圆有两个不同的交点,若直线的斜率大于0,求的取值范围.

查看答案和解析>>

同步练习册答案