【题目】已知椭圆C的离心率为且经过点
(1)求椭圆C的方程;
(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.
(1)求这300名员工日行步数(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);
(2)由直方图可以认为该企业员工的日行步数(单位:千步)服从正态分布,其中为样本平均数,标准差的近似值为2,求该企业被抽取的300名员工中日行步数的人数;
(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额(单位:元)的分布列和数学期望.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、西鸡、戌狗、亥猪十二属相现有十二生肖吉祥物各一件,甲、乙、丙三位同学依次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三陵锥中,为等腰直角三角形,,为正三角形,为的中点.
(1)证明:平面平面;
(2)若二面角的平面角为锐角,且棱锥的体积为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车尾气中含有一氧化碳(),碳氢化合物()等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:
不了解 | 了解 | 总计 | |
女性 | 50 | ||
男性 | 15 | 35 | 50 |
总计 | 100 |
(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为,问是否有的把握认为“对机动车强制报废标准是否了解与性别有关”?
(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中浓度与使用年限线性相关,试确定关于的回归方程,并预测该型号的汽车使用12年排放尾气中的浓度是使用4年的多少倍.
附:()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:用最小二乘法求线性回归方程系数公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆于两点(点不同于椭圆的右顶点),证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(Ⅰ)求;
(Ⅱ)在函数的图象上取定两点,,记直线的斜率为,问:是否存在,使成立?若存在,求出的值(用表示);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.
(1)求证:平面平面BDE;
(2)求二面角B-EF-D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com