精英家教网 > 高中数学 > 题目详情

【题目】下列说法中不正确的是( )

A.顺序结构是由若干个依次执行的步骤组成的,每一个算法都离不开顺序结构

B.循环结构是在一些算法中从某处开始,按照一定的条件,反复执行某些步骤,所以循环结构中一定包含条件结构

C.循环结构中不一定包含条件结构

D.用程序框图表示算法,使之更加直观形象,容易理解

【答案】C

【解析】

根据程序框图的定义和性质依次判断每个选项得到答案.

A. 顺序结构是由若干个依次执行的步骤组成的,每一个算法都离不开顺序结构,正确;

B. 循环结构是在一些算法中从某处开始,按照一定的条件,反复执行某些步骤,所以循环结构中一定包含条件结构,正确;

C. 循环结构中一定包含条件结构,所以循环结构中不一定包含条件结构是错误的;

D. 用程序框图表示算法,使之更加直观形象,容易理解,正确;

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由题意可得 q1,且 an 0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,

则由题意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.

故选:A.

【点睛】

本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.

型】单选题
束】
10

【题目】若直线y=2x上存在点(xy)满足约束条件,则实数m的最大值为

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数)的两个不同的零点,且适当排序后可构成等差数列,也可适当排序后构成等比数列,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:

使用智能手机

不使用智能手机

总计

学习成绩优秀

4

8

12

学习成绩不优秀

16

2

18

总计

20

10

30

(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?

(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数的分布列及数学期望.

参考公式:,其中

参考数据:

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%15%.据现场目击证人说,事故现场的出租车是红色的,并对证人的辨别能力进行了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑.请问警察的认定对红色出租车公平吗?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为线段的中点, ,四边形为边长为1的正方形,平面平面为棱的中点.

(1)若为线上的点,且直线平面,试确定点的位置;

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n三位递增数(如135256345等)

现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由123456组成的所有三位递增数中随机抽取1个数,且只抽取1次,若抽取的三位递增数是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.

1)由123456可组成多少三位递增数?并一一列举出来.

2)这种选取规则对甲乙两名学生公平吗?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

同步练习册答案