精英家教网 > 高中数学 > 题目详情
2.已知OA为球O的半径,垂直于OA的平面截球面得到圆M(M为截面与OA的交点).若圆M的面积为2π,OM=$\sqrt{2}$,则球的表面积为16π.

分析 由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.

解答 解:∵圆M的面积为2π,∴圆M的半径r=$\sqrt{2}$,
设球的半径为R,
由图可知,R2=2+2=4.
∴S=4πR2=16π.
故答案为:16π.

点评 本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若tan($α+\frac{π}{3}$)=2$\sqrt{3}$,则tan($α-\frac{2π}{3}$)的值是2$\sqrt{3}$,2sin2α-cos2α 的值是-$\frac{43}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,则y-2x的最大值是(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.正方体ABCD-A'B'C'D'的棱长为a,连接A'C',A'D,A'B,BD,BC',C'D,得到一个三棱锥A'-BC'D.求:
(1)求异面直线A'D与C'D′所成的角;
(2)三棱锥A'-BC'D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求满足下列条件的椭圆的标准方程.
(1)长轴与短轴的和为18,焦距为6;
(2)焦点在x轴上过点(0,2),长轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1,F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M、N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角的度数为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)当a=-$\frac{10}{3}$时,讨论函数f(x)的单调性;
(2)若函数f(x)仅在x=0处有极值,求a的取值范围;
(3)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AM}=4\overrightarrow{MC},P$为AD的中点,$\overrightarrow{MP}$=(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{13}{10}$$\overrightarrow{b}$C.-$\frac{4}{5}$$\overrightarrow{a}$-$\frac{3}{10}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案