精英家教网 > 高中数学 > 题目详情
10.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF和线段FQ的长分别是p,q,则$\frac{1}{p}+\frac{1}{q}$等于(  )
A.$\frac{1}{4a}$B.$\frac{1}{2a}$C.2aD.4a

分析 选择题遵循一般结论利用特殊法,设PQ的斜率 k=0,因抛物线焦点坐标为(0,$\frac{1}{4a}$),把直线方程 y=$\frac{1}{4a}$ 代入抛物线方程得 x=±$\frac{1}{2a}$,可得 PF=FQ=$\frac{1}{2a}$,从而求得结果.

解答 解:不妨设PQ的斜率 k=0,因抛物线焦点坐标为(0,$\frac{1}{4a}$),
把直线方程 y=$\frac{1}{4a}$ 代入抛物线方程得 x=±$\frac{1}{2a}$,
∴PF=FQ=$\frac{1}{2a}$,即p=q=$\frac{1}{2a}$,则$\frac{1}{p}+\frac{1}{q}$=2a+2a=4a,
故选:D.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,设k=0,求出PF=FQ=$\frac{1}{2a}$,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知i是虚数单位,若z(1-2i)=2+4i,则复数z=$-\frac{6}{5}+\frac{8}{5}i$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面积S=24,b=10,则a的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ) 在圆x2+y2=4上任取一点P,过点P作x轴的垂线段,D为垂足,当P在圆上运动时,求线段PD的中点Q的轨迹方程;
(Ⅱ)记(Ⅰ)中的轨迹为曲线为C,斜率为k(k≠0)的直线l交曲线C于M(x1,y1),N(x2,y2)两点,记直线OM,ON的斜率分别为k1,k2,当3(k1+k2)=8k时,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线L:y=x+m与抛物线y2=8x交于A、B两点(异于原点),
(1)若直线L过抛物线焦点,求线段|AB|的长度;
(2)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设0<x<1,a,b都为大于零的常数,则$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{1-x}$的最小值为(  )
A.(a-b)2B.(a+b)2C.a2b2D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),
(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人;
(3)在(2)中抽取的5人中,随机抽取2 人,求分数在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若α为第一象限角,且cosα=$\frac{2}{3}$,则tanα=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.
(1)当m=2时,求A∪B、(∁RA)∩B;
(2)若A∩B=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案