精英家教网 > 高中数学 > 题目详情

【题目】设函数fn(x)=﹣xn+3ax(a∈R,n∈N+),若对任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,则a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

【答案】A
【解析】解:因为对任意x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,
所以|f3(1)﹣f3(﹣1)|≤1,从而有|(﹣1+3a)﹣(1﹣3a)|=|6a﹣2|≤1,
所以 ≤a≤
又f3′(x)=﹣3(x2﹣a),
在[﹣1,﹣ ],[ ,1]内f′3(x)<0,
所以f3(x)在[﹣1,﹣ ],[ ,1]内为减函数,
f3(x)在[﹣ ]内为增函数,
只需|f3 )﹣f3 )|≤1
化简可得4a ≤1,解得:a≤
所以a的取值范围是 ≤a≤
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是(填空写所有正确选项的序号)
①y= ;②y= ;③y= ;④y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=﹣xn+3ax(a∈R,n∈N+),若对任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,则a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CA,CB分别与圆O切于A,B两点,AE是直径,OF平分∠BOE交CB的延长线于F,BD∥AC.

(1)证明:OB2=BCBF;
(2)证明:∠DBF=∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:

猪编号

1

2

3

4

5

x

169

181

166

185

180

y

95

100

97

103

101


(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CA,CB分别与圆O切于A,B两点,AE是直径,OF平分∠BOE交CB的延长线于F,BD∥AC.

(1)证明:OB2=BCBF;
(2)证明:∠DBF=∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数g(x)=alnx,对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}中的项都满足a2n1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n1(n∈N*),求b2016
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn , 求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n1+2(n∈N*),记数列{ }的前n项和为Tn , 问是否存在实数t,使得(t﹣Tn)(t+ )<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案