精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2x+acosx+x在点x= 处取得极值.
(1)求实数a的值;
(2)当x∈[﹣ ]时,求函数f(x)的最大值.

【答案】
(1)解:f(x)=sin2x+acosx+x,

f′(x)=2cos2x﹣asinx+1,

f′( )=2cos ﹣asin +1=0,

解得:a=4


(2)解:由(1)得:f(x)=sin2x+4cosx+x,

f′(x)=2cos2x﹣4sinx+1=2﹣4sin2x﹣4sinx+1=﹣(2sinx+1)2+4,

令f′(x)>0,解得:﹣ <x< <x<

令f′(x)<0,解得: <x<

∴f(x)在[﹣ )递增,在( )递减,在( )递增,

∴f(x)的最大值是f( )或f( ),

而f( )= ﹣2+ <f( )= +

故f(x)的最大值是f( )= +


【解析】(1)求出函数的导数,根据f′( )=0,求出a的值即可;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,且

(1)求证:平面

(2)求和平面所成角的正弦值;

(3)在线段上是否存在一点使得平面平面,若存在,求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(2)根据(1)中求出的线性回归方程,若票价定为70元,预测该电影院渴望观影人数.附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 经计算估计这组数据的中位数;

(2)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,求这个芒果中恰有个在内的概率.

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数上为增函数,求正实数的取值范围;

(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b= ,求△ABC面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A,B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}满足b3=3,b5=9.
(1)分别求数列{an},{bn}的通项公式;
(2)设Cn= (n∈N*),求证Cn+1<Cn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的实数m的值为(

A.9
B.10
C.11
D.12

查看答案和解析>>

同步练习册答案