精英家教网 > 高中数学 > 题目详情

【题目】近年来我国电子商务行业迎来发展的新机遇2016年双11期间,某购物平台的销售业

绩高达1207亿人民币与此同时相关管理部门推出了针对电商的商品和服务的评价体系现从评价系统中选出200次成功交易并对其评价进行统计对商品的好评率为0.9对服务的好评率为0.75其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下认为商品好评与服务好评有关?

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量

求对商品和服务全好评的次数的分布列;

的数学期望和方差.

,其中

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

【答案】(1) 不可以(2)见解析

【解析】试题分析:(1)先根据数据列列联表,将数据代入卡方公式,最后对照参考数据判断把握率(2)先确定随机变量取法,再根据组合数求对应概率,列表可得分布列,最后根据数学期望公式以及方差公式求期望与方差

试题解析:解:(1)由题意可得关于商品和服务评价的列联表:

对服务好评

对服务不满意

合计

对商品好评

140

40

180

对商品不满意

10

10

20

合计

150

50

200

由于则不可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关.每次购物时,对商品和服务都好评的概率为,

的取值可以是0,1,2,3.

其中

.

的分布列为:

0

1

2

3

由于,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x、y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x3+ax,

(1)a=3,函数f(x)的单调区间;

(2)a=12时,函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f( ),当x∈(﹣1,0)时,有f(x)>0;若P=f( )+f( ),Q=f( ),R=f(0);则P,Q,R的大小关系为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F为椭圆C1 =1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[ ],则双曲线C2的离心率的取值范围是(
A.[ ]
B.[ ,++∞)
C.(1,4]
D.[ ,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2﹣2m)x﹣f(x);
①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;
②求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x|x﹣a|+2x.
(1)若a=2,求函数f(x)在区间[0,3]上的最大值;
(2)若a>2,写出函数f(x)的单调区间(不必证明);
(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py上点(2,2)处的切线经过椭圆 的两个顶点.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A的两条斜率之积为﹣4的直线与该椭圆交于B,C两点,是否存在一点D,使得直线BC恒过该点?若存在,请求出定点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若△ABC的重心为G,当边BC的端点在椭圆E上运动时,求|GA|2+|GB|2+|GC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是偶函数,求解下列问题.
(1)求θ;
(2)将函数y=f(x)的图象先纵坐标不变,横坐标缩短为原来的 倍,再向左平移 个单位,然后向上平移1个单位得到y=g(x)的图象,若关于x的方程 有且只有两个不同的根,求m的范围.

查看答案和解析>>

同步练习册答案