【题目】已知数列{an}满足a1=1,an+1=an+(c>0,n∈N*),
(Ⅰ)证明:an+1>an≥1;
(Ⅱ)若对任意n∈N*,都有,证明:(ⅰ)对于任意m∈N*,当n≥m时,
(ⅱ)
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(Ⅰ)由题意,可采用数学归纳法,以及放缩法对不等式进行证明,从而问题可得解;(Ⅱ)在第(i)中,根据(Ⅰ)的结论,采用放缩法对数列的通项进行放大,再用累加法进行求解即可;在第(ii)中,对参数进行分段讨论,结合(i)中的结论,从而问题可得解.
试题解析:(Ⅰ)因为c>0,所以 an+1=an+>an(n∈N*),
下面用数学归纳法证明an≥1.
①当n=1时,a1=1≥1;
②假设当n=k时,ak≥1,
则当n=k+1时,ak+1=ak+>ak≥1.
所以,当n∈N*时,an≥1.
所以 an+1>an≥1.
(Ⅱ)(ⅰ)当n≥m时,an≥am,
所以 an+1=an+≤an+,
所以 an+1-an≤,累加得 an-am≤(n-m),
所以 .
(ⅱ)若,当时,
,所以.
所以当时,.
所以当时,,矛盾.
所以 .
因为 ,
所以.
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点作直线与抛物线交于点、.
(1)求证:不是直角三角形.
(2)当的斜率为时,抛物线上是否存在点,使为直角三角形?若存在,求出所有的点;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结束,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点,与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线,分别交椭圆于,两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)已知分别是椭圆的左、右顶点,过的直线交椭圆于两点,记直线的交点为,是否存在一条定直线,使点恒在直线上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩) | |||||
管理时间(单位:月) |
并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | ||
女性村民 |
求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.
参考公式:,参考数据:,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com