精英家教网 > 高中数学 > 题目详情
在△ABC中,∠C=2∠B,且a,b为∠A,∠B所对边为已知,则
sin3B
sinB
=
 
考点:正弦定理,两角和与差的正弦函数
专题:解三角形
分析:由已知∠C=2∠B及正弦定理可解得cosB=
c
2b
,可求得cosC,由两角和与差的正弦函数公式化简
sin3B
sinB
=4cos2B-1,由余弦定理求得cosC,从而解得c2,即可得解.
解答: 解:∵∠C=2∠B,
∴由正弦定理可得:
b
sinB
=
c
sinC
=
c
sin2B
=
c
2sinBcosB
,可得:cosB=
c
2b
,可解得:cosC=cos2B=2cos2B-1=
c2
2b2
-1
①,
sin3B
sinB
=
sin(B+2B)
sinB
=cos2B+2cos2B=4cos2B-1=
c2
b2
-1③.
∴由余弦定理可得:cosC=
a2+b2-c2
2ab

∴由①②可解得:c2=b(a+b),从而代入③可解得:
sin3B
sinB
=
c2
b2
-1=
a
b

故答案为:
a
b
点评:本题主要考查了两角和与差的正弦函数公式及正弦定理的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若存在x∈[-2,3],使不等式4x-x2≥a成立,则实数a的取值范围是(  )
A、[-8,+∞)
B、[3,+∞)
C、(-∞,-12]
D、(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A′B′C′D′棱长为2,E,F,G分别为C′C,D′A′,AB的中点,求点A到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的单调性,并求出单调区间:
f(x)=-2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D、E、F六人排成一排,要求A在B前且C在D前,则共有的排法总数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下面由奇数组成的数阵,回答下列问题;
(1)求第6行的第一个数;
(2)第20行的最后一个数;
(3)求第20行的所有数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+a2x+2b-a3,当x∈(-∞,-2)∪(6,+∞)时,f(x)<0,当∈(-2,6)时,f(x)>0.
(1)求a、b的值;
(2)设F(x)=-
k
4
f(x)+4(k+1)x+2(6k-1),则当k取何值时,函数F(x)的值恒为负数?

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥S-ABC中,M、N分别为SC、BC的中点,且MN⊥AM,若侧棱SA=4,则正三棱锥S-ABC的外接球的表面积是(  )
A、36πB、72π
C、144πD、48π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),(x∈D),若同时满足以下条件:
①f(x)在D上单调递减或单调递增;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b](a<b).那么撑f(x)(x∈D)为闭函数.
(1)求闭函数f(x)=
x
符合条件②的区间[a,b];
(2)判断函数y=lnx+3x-6是不是闭函数,若是请找出区间[a,b],若不是请说明理由;
(3)若y=(x-k)2,x∈(k,+∞)是闭函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案