精英家教网 > 高中数学 > 题目详情
5.已知p:$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$,q:1-m≤x≤1+m,若非p是非q的必要不充分条件,求实数m的取值范围.

分析 根据命题之间的关系,结合充分条件和必要条件的定义进行求解即可.

解答 解:由$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$得$\left\{\begin{array}{l}{x≥-2}\\{x≤10}\end{array}\right.$,即-2≤x≤10,
若非p是非q的必要不充分条件,
则q是p的必要不充分条件,
则满足$\left\{\begin{array}{l}{1+m≥1-m}\\{1+m≥10}\\{1-m≤-2}\end{array}\right.$,即$\left\{\begin{array}{l}{m≥0}\\{m≥9}\\{m≥3}\end{array}\right.$,解得m≥9,
即实数m的取值范围是[9,+∞)

点评 本题主要考查充分条件和必要条件的应用,根据逆否命题的等价性进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在平面四边形ABCD中,∠A=∠B=60°,∠C=75°,BC=2,则AB的取值范围是(2,1+$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C:(x-3)2+(y-4)2=1和两点A(1-m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为2$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于集合下列正确的是(  )
A.0∉NB.∅∈RC.0∉N*D.$\frac{1}{2}$∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.经过点 P(1,1)的直线在两坐标轴上的截距都是正数,若使截距之和最小,则该直线的方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y=4x2的焦点到准线的距离是$\frac{1}{8}$,准线方程为y=-$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和记为Sn,且满足Sn=2an-n(n∈N*).
(1)求a1,a2的值,并证明:数列{an+1}是等比数列;
(2)证明:$\frac{n}{2}-\frac{1}{3}<\frac{a_1}{a_2}+\frac{a_2}{a_3}+…+\frac{a_n}{{{a_{n+1}}}}<\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用“五点法“作出y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)在一个周期上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=|x+1|+|x-2|
(])若关于x的不等式|x+1|+|x-2|≤2m有实数解,求m的取值范围;
(2)若不等式|x+1|+|x-2|≥a+$\frac{2}{a}$恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案