【题目】设函数,其中.
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,证明:函数不可能存在两个零点.
【答案】(Ⅰ);(Ⅱ)证明见解析.
【解析】分析:(Ⅰ)求出函数的导数,条件下,判断出函数的单调性,求出函数的极值.
(Ⅱ)令,求得两个根,对分类讨论,分别研究函数的单调性与极值的取值,通过判断即可证明结论.
详解:(Ⅰ)解:求导,得,
因为,所以,
所以当时,,函数为减函数;
当时,,函数为增函数;
故当时,存在极小值,不存在极大值.
(Ⅱ)证明:解方程得
当即时,
随着的变化,与的变化情况如下表:
1 | |||||
+ | 0 | - | 0 | + | |
↗ | 极大值 | ↘ | 极小值 | ↗ |
所以函数在,上单调递增,在上单调递减.
又因为,
所以函数至多在区间存在一个零点;
当,即时,
因为(当且仅当时等号成立),
所以在单调递减,
所以函数至多存在一个零点;
当,即时,
随着的变化,与的变化情况如下表:
1 | |||||
+ | 0 | - | 0 | + | |
↗ | 极大值 | ↘ | 极小值 | ↗ |
所以函数在,上单调递增,在上单调递减.
又因为,
所以当时,,
综上,当时,函数不可能存在两个零点.
科目:高中数学 来源: 题型:
【题目】《厉害了,我的国》这部电影记录:到2017年底,我国高铁营运里程达2.5万公里,位居世界第一位,超过第二名至第十名的总和,约占世界高铁总量的三分之二.如图是我国2009年至2017年高铁营运里程(单位:万公里)的折线图.
根据这9年的高铁营运里程,甲、乙两位同学分别选择了与时间变量的两个回归模型①:;②.
(1)求,(精确到0.01);
(2)乙求得模型②的回归方程为,你认为哪个模型的拟合效果更好?并说明理由.
附:参考公式:,,.
参考数据:
1.39 | 76.94 | 285 | 0.22 | 0.09 | 3.72 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点, ,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O= .
(1)证明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | ||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,若输入的k=10,则该算法的功能是( )
A.计算数列{2n﹣1}的前10项和
B.计算数列{2n﹣1}的前9项和
C.计算数列{2n﹣1}的前10项和
D.计算数列{2n﹣1}的前9项和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com