精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,函数g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$,则f(x)=g(x)根的个数是(  )
A.6B.7C.8D.9

分析 作函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$与g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$的图象,从而利用数形结合的方法求解.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$与g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$的图象如下,

结合图象可知,
y=|sinx|与y=lg(-x)在(-∞,0)上有5个交点,
在[0,+∞)上,y=x2与y=2x有两个交点,
分别为(2,4),(4,16);
故方程f(x)=g(x)根的个数为7,
故选:B.

点评 本题考查了分段函数的应用及数形结合的思想应用,注意基本初等函数的图象的作法及图象变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数a,b满足2a2-5lna-b=0,c∈R,则$\sqrt{(a-c)^{2}+(b+c)^{2}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a1=1,且an+1=3an+2•3n,(n∈N+),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.利用单位圆,求使下列不等式成立的x的范围
(1)cosx≥$\frac{\sqrt{2}}{2}$
(2)tanx≤1 
(3)sinx≤-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a≠0,函数f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}-ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,则f(a)=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合M={x|x2+px+q=0}={2},求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设条件p:2x2-3x+1>0,条件q:$\frac{1}{x}$<1,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角960°的终边上有一点(-4,a),则a的值是(  )
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.±4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+3x-4.
(Ⅰ)判断f(x)的单调性并证明;
(Ⅱ)证明:曲线y=g(x)=f(x)+3a(x2-2x+4)(a∈R)在x=0处的切线过定点;
(Ⅲ)若g(x)在x=x0处取得极小值,且x0∈(1,3),求a的取值范围.

查看答案和解析>>

同步练习册答案