精英家教网 > 高中数学 > 题目详情

【题目】已知圆.

(Ⅰ)若圆的切线在轴和轴上的截距相等,求此切线的方程;

(Ⅱ)从圆外一点向该圆引一条切线,切点为为坐标原点,且,求使取得最小值的点的坐标.

【答案】(1);(2)

【解析】

试题分析:(1)切线在两坐标轴上的截距相等且截距不为零,可设切线方程为

根据圆的方程得圆心,半径,代入点到直线的距离公式中,即可得到所求切线的方程.

切线与半径垂直得,化简得动点的轨迹是直线

的最小值就是的最小值,即点到直线的距离,从而可以求出点坐标.

试题解析:(1切线在两坐标轴上的截距相等且截距不为零,

设切线方程为

圆心到切线的距离等于圆的半径

,或,则所求切线的方程为

2切线与半径垂直,

动点的轨迹是直线

的最小值就是的最小值,而的最小值为到直线的距离

此时点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为

(1)分别求出mn的值;

(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;

(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于18,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是正方形所在平面外一点,在面上的正投影,

.有以下四个命题:

(1)⊥面;(2)

(3)以作为邻边的平行四边形面积是8;

(4)恰在上.

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆锥中,已知,⊙O的直径,点C在底面圆周上,且的中点.

(Ⅰ)证明:∥平面

(Ⅱ)证明:平面平面

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面

(Ⅱ)若,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+)<33,则这样的零点有(  )
A.61个
B.63个
C.65个
D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案