精英家教网 > 高中数学 > 题目详情

在图一所示的平面图形中,是边长为 的等边三角形,是分别以为底的全等的等腰三角形,现将该平面图形分别沿折叠,使所在平面都与平面垂直,连接,得到图二所示的几何体,据此几何体解决下面问题.

(1)求证:;
(2)当时,求三棱锥的体积
(3)在(2)的前提下,求二面角的余弦值.

(1)通过计算体积证明。
(2)二面角是钝二面角,.

解析试题分析:(1)证明:如图,

分别取AC、BC中点M、N,连接FM,EN,MN,是全等的等腰三角形,,,又所在平面都与平面垂直,平面ABC,平面ABC,四边形EFMN是平行四边形,,又,,同理可得:,,故是边长为的正三角形,.···
过M作MQ于Q,解得MQ=,即为M到平面ABD的距离,由(1)可知平面MNEF平面ABD,E到平面ABD的距离为
.···
分别以NA、NB、NE所在直线为x、y、z轴建立空间直角坐标系
依题意得


是平面ADF的一个法向量,
则有,即
,得
又易知是平面ABD的一个法向量,
设二面角的平面角为

二面角是钝二面角,.···(12分)
考点:本题主要考查立体几何中的平行关系、垂直关系,体积计算、角的计算。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。利用向量则能简化证明过程,对计算能力要求高。解答立体几何问题,另一个重要思想是“转化与化归思想”,即注意将空间问题转化成平面问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

(Ⅰ) 求证://平面
(Ⅱ) 求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面和圆所在的平面互相垂直,且.

(1)求证:平面
(2)设的中点为,求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,是正三角形,都垂直于平面,且的中点.

求证:(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的多面体中,⊥平面,
的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

同步练习册答案