精英家教网 > 高中数学 > 题目详情

【题目】如图在直三棱柱中, 中点.

)求证: 平面

)若,且,求二面角的余弦值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】试题分析

I连结由题意可证得从而得中点,所以,又由题意得得所以得。(也可通过面面垂直证线面垂直)II由题意可得两两垂直建立空间直角坐标系,求得平面和平面的法向量分别为 ,由法向量夹角的余弦值可得二面角的余弦值。

试题解析:

I证明连结

平面平面 平面

中点,

中点,

法一:由平面 平面

①②

所以平面

法二:由平面 平面

平面平面

又平面平面,

所以平面

II解:由,得

由(I)知,又,得

两两垂直,以为原点,建立如图所示的空间直角坐标系

是平面的一个法向量,

,得,

为平面的一个法向量,

.

,得

根据题意知二面角为锐二面角

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线与圆O: 且与椭圆C: 相交于A,B两点

(1)若直线恰好经过椭圆的左顶点,求弦长AB;

(2)设直线OA,OB的斜率分别为k1,k2,判断k1·k2是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足.

(1)求数列的通项公式;

(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 是圆上任意一点,线段的垂直平分线和半径相交于点

(Ⅰ)当点在圆上运动时,求点的轨迹方程;

(Ⅱ)直线与点的轨迹交于不同两点,且(其中 O 为坐标

原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 为棱中点.

I)求证: 平面

II)求证: 平面

III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1b1b2(a2a1)=b1

(1)求数列{an}和{bn}的通项公式;

(2)设cn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点,斜率是直线的斜率的的直线方程;

(2)求经过点,且在轴上的截距等于在轴上截距的2倍的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是6 cm,圆柱筒高为2 cm.

1这种“浮球”的体积是多少cm3结果精确到0.1?

2要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?

查看答案和解析>>

同步练习册答案