精英家教网 > 高中数学 > 题目详情
椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为(  )
A.B.C.D.
C

试题分析:由图形可知直角三角形的两直角边都为,斜边为,由勾股定理的

点评:求离心率关键是结合图形找到关于的关系
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与抛物线相交于两点,为抛物线的焦点,若,则的值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点为抛物线上一点,记点轴距离,点到直线的距离,则的最小值为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆过椭圆的两焦点,与椭圆有且仅有两个与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程
(2)求的取值范围;
(3)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上一点P到轴的距离是4,则点P到该抛物线焦点的距离是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知半径为6的圆轴相切,圆心在直线上且在第二象限,直线过点
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆相交于两点且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,若
的大小为            .

查看答案和解析>>

同步练习册答案