精英家教网 > 高中数学 > 题目详情

【题目】下列四组函数中,表示同一函数的是(
A.f(x)=lgx4 , g(x)=4lgx
B.
C. ,g(x)=x+2
D.

【答案】B
【解析】解:对于A:f(x)=lgx4的定义域是{x|x≠0},而g(x)=4lgx的定义域是{x|x>0},定义域不相同,∴不是同一函数;
对于B: =|x|, ,定义域相同,对应关系也相同,∴是同一函数;
对于C: 的定义域是{x|x≠2},而g(x)=x+2的定义域是R,定义域不相同,∴不是同一函数;
对于D: 的定义域是{x|﹣1≤x≤1},而g(x)= 的定义域是{x|1≤x或x≤﹣1},定义域不相同,∴不是同一函数;
故选:B.
【考点精析】解答此题的关键在于理解判断两个函数是否为同一函数的相关知识,掌握只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈[1,2],x2≥a;命题q:x∈R,x2+2ax+2﹣a=0,若命题p∧q是真命题,则实数a的取值范围是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的定义域和值域;
(2)若f(x)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题:实数满足,其中;命题:实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,是自然对数的底数),曲线在点处的切线与轴平行.

(1)求的值;

(2)求的单调区间;

(3)设,其中的导函数.证明:对任意.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x+1)的定义域为[﹣1,0],则函数f( ﹣2)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,A={x|2x2﹣x=0},B={x|mx2﹣mx﹣1=0},其中x∈R,如果(UA)∩B=,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},则A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是

(1)求 的标准方程;

(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案