精英家教网 > 高中数学 > 题目详情

【题目】已知函数上为增函数.

(1)求实数的取值范围;

(2)若函数的图象有三个不同的交点,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:

(1)函数为增函数,则导函数大于零恒成立,据此可得实数的取值范围是

(2)利用题意构造新函数,结合函数的性质可得实数的取值范围是.

试题解析:

(1)由题意

因为上为增函数,

所以上恒成立,

,所以

当k=1时, 恒大于0,故上单增,符合题意.

所以k的取值范围为k≤1.

(2)设

,令

由(1)知k≤1,

k=1时, 在R上递增,不合题意,舍去.

②当k<1时, 的变化情况如下表:

x

k

(k,1)

1

(1,+ )

+

0

0

+

极大

极小

由于,欲使图象有三个不同的交点,即方程

也即有三个不同的实根。故需

所以解得

综上,所求k的范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校数学系2016年高等代数试题有6个题库,其中3个是新题库(即没有用过的题库),3个是旧题库(即至少用过一次的题库),每次期末考试任意选择2个题库里的试题考试.

(1)设2016年期末考试时选到的新题库个数为,求的分布列和数学期望;

(2)已知2016年时用过的题库都当作旧题库,求2017年期末考试时恰好到1个新题库的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.

(1)判断集合A={-1,1,2}是否为可倒数集;

(2)试写出一个含3个元素的可倒数集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,点边的中点,将沿折起,使平面平面,连接 ,得到如图所示的几何体.

(Ⅰ)求证: 平面

(Ⅱ)若 与其在平面内的正投影所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,直线的参数方程为: (t为参数),它与曲线C: 相交于A,B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的 列联表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;

(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?

0.050

0.010

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

查看答案和解析>>

同步练习册答案