精英家教网 > 高中数学 > 题目详情
13.y=sin2x+cosxsinx的最大值是$\frac{\sqrt{2}+1}{2}$,最小值是$\frac{-\sqrt{2}+1}{2}$.

分析 由条件利用三角恒等变换化简函数的解析式,再根据正弦函数的值域,求得函数的最值.

解答 解:y=sin2x+cosxsinx=$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
故它的最大值为$\frac{\sqrt{2}+1}{2}$,它的最小值为$\frac{-\sqrt{2}+1}{2}$,
故答案为:$\frac{\sqrt{2}+1}{2}$;$\frac{-\sqrt{2}+1}{2}$.

点评 本题主要考查三角恒等变换,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$),x∈R.
(1)若对任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a成立,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求函数y=g(x)-$\frac{1}{3}$在区间[-2π,4π]内的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,若|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{3},|\overrightarrow{AB}+\overrightarrow{AC}|=|\overrightarrow{BC}|$,则|$\overrightarrow{AC}-\overrightarrow{AB}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$表示的平面区域的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一个平面内,P,Q分别是对角线AE,BD上的点,且AP=DQ,求证:PQ∥面CBE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=1+t}\end{array}\right.$(t为参数).曲线C2的极坐标方程化为 ρ=2cosθ+6sinθ.
(I)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标化为直角坐标方程;
(Ⅱ)曲线C1,C2是否相交,若相交,请求出弦长,若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mx2-mx-1.
(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;
(2)若对于x∈[1,3],f(x)<5-m无解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)满足条件f($\frac{x-t+1}{2}$)=2log2(x+1),其中t是实常数.
(1)求f(x);
(2)当x∈[0,1]时,f(x)≥log2(x+1)恒成立,求t的取值范围;
(3)当t=4时,令g(x)=f(x)-log2(x+1),x∈[-$\frac{1}{2}$,1].求函数g(x)的最大值和最小值及其相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设α,β为两个不同的平面,n,m为两条不同的直线,且n?α,m?β,有如下两个命题:
p:若α∥β,则n∥m;
q:若m⊥n,则α⊥β,那么(  )
A.p∧q是假命题B.p∨q是真命题C.¬p是假命题D.p∧(¬q)是真命题

查看答案和解析>>

同步练习册答案