精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{}的前n项和为Sn,公差d0,且 ,公比为q0q1)的等比数列{}中,

1)求数列{}{}的通项公式

2)若数列{}满足,求数列{}的前n项和Tn

【答案】(1) (2)为正偶数时, 为正奇数时,

【解析】试题分析:1列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式,公比为的等比数列 可得利用等比数列的定义,求出公比,从而可得{}的通项公式;(2)由分类讨论,利用分组求和法根据等差数列与等比数列的前项公式即可得结果.

试题解析(1)因为为等差数列,所以

又公差,所以

所以

所以解得

所以

因为公比为的等比数列中,

所以,当且仅当时成立.

此时公比  

所以

(2)①为正偶数时, 的前项和中, 各有前项,由(1)知

为正奇数时, 中, 分别有前项、项.

【方法点晴】本题主要考查等差数列及等比数列的通项、等差数列及等比数列的求和公式以及利用“分组求和法”求数列前项和,属于中档题. 利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,其中为常数;

(1)若,且是奇函数,求的值;

(2)若 ,函数的最小值是,求的最大值;

(3)若,在上存在个点 ,满足

,使得

求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是 ,则下列说法正确的是(
A. ,甲比乙成绩稳定
B. ,乙比甲成绩稳定
C. ,甲比乙成绩稳定
D. ,乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:2x﹣y+1=0,直线l2与l1关于直线y=﹣x对称,则直线l2的方程为(
A.x﹣2y+1=0
B.x+2y+1=0
C.x﹣2y﹣1=0
D.x+2y﹣1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有1个整数解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣3ax2+3bx的图象与直线12x+y﹣1=0相切于点(1,﹣11).
(1)求a,b的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆经过O(0,0))和A(4,0)两点,线段OA的垂直平分线和圆C交于M,N两点,且|MN|=2
(1)求圆C的方程
(2)设点P在圆C上,试问使△POA的面积等于2的点P共有几个?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)当时,求函数的极值;

(2)当时,讨论函数的定义域内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O中,直径AB垂直于弦CD,垂足为MPCD延长线上一点,PE切⊙O于点E,连接BECD于点F,证明:

(1)∠BFM=∠PEF

(2)PF2PD·PC.

查看答案和解析>>

同步练习册答案