精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(2,x)与向量$\overrightarrow{b}$=(4x+2,3)方向相同,则$\overrightarrow{a}$+2$\overrightarrow{b}$=(8,4).

分析 利用向量共线定理即可得出.

解答 解:∵向量$\overrightarrow{a}$=(2,x)与向量$\overrightarrow{b}$=(4x+2,3)方向相同,
∴x(4x+2)-6=0,
化为2x2+x-3=0,
解得x=-$\frac{3}{2}$,1.
当x=-$\frac{3}{2}$时,$\overrightarrow{b}$=(-4,3),$\overrightarrow{a}$=$(2,-\frac{3}{2})$,$\overrightarrow{b}$=-2$\overrightarrow{a}$,方向相反,舍去.
∴x=1,
∴$\overrightarrow{a}$+2$\overrightarrow{b}$=(2,1)+(6,3)=(8,4),
故答案为:(8,4).

点评 本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.用长8m的铝材,做成一个“H”字形窗框,求:高和宽各为多少时窗户的透亮面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=$\frac{4}{2-{x}^{2}}$的图形的渐近线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P在四边形ABCD所在平面外,如果把两条异面直线看成一对,那么P与四边形ABCD的四个顶点的连线以及此四边形的四条边所在的直线共8条直线中,异面直线共有多少对?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示;
(1)分别写出终边落在0A,0B位置上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从总体为N的一批零件中使用简单随机抽样抽取一个容量为30的样本,若某个零件被第2次抽取的可能性为1%,则N=(  )
A.100B.3000C.101D.3001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义域为R的函数f(x),满足对任意x∈R,都有f(1+x)=f(1-x),且f(-x)=f(x),当x∈[0,1]时,f(x)=x,若函数g(x)=$\left\{\begin{array}{l}{lgx}&{(x>0)}\\{\frac{-2}{x-1}}&{(x≤0)}\end{array}\right.$,则函数y=f(x)-g(x)在区间[-11,11]上的零点的个数是(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式$\frac{6-x{-x}^{2}}{{2x}^{2}-x-1}$≥0的解集是[-3,-$\frac{1}{2}$)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在棱长为1的正四面体ABCD中,M,N分别是BC和AD的中点,则线段MN的长是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案