分析 (1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;
(2)曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$表示双曲线,进而可得an=$\frac{2}{3}n$,Sn=n2,则Sm+Sn-λSk>0恒成立,?$\frac{{m}^{2}+{n}^{2}}{{k}^{2}}$>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得$\frac{{m}^{2}+{n}^{2}}{{k}^{2}}$>$\frac{9}{2}$,进而得到答案;
(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;
解答 解:(1)∵A+B={a+b|a∈A,b∈B};
当A={0,1,2},B={-1,3}时,
A+B={-1,0,1,3,4,5};
(2)曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$,即$\frac{{x}^{2}}{{n}^{2}-n+1}-\frac{{y}^{2}}{n-1}=\frac{1}{9}$,在n≥2时表示双曲线,
故an=2$\sqrt{\frac{{(n}^{2}-n+1)+(n-1)}{9}}$=$\frac{2}{3}n$,
∴a1+a2+a3+…+an=$\frac{{n}^{2}+n}{3}$,
∵B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,
∴A+B中的所有元素之和为Sn=3(a1+a2+a3+…+an)+n($-\frac{1}{9}-\frac{2}{9}-\frac{2}{3}$)=3•$\frac{{n}^{2}+n}{3}$-m=n2,
∴Sm+Sn-λSk>0恒成立,?$\frac{{m}^{2}+{n}^{2}}{{k}^{2}}$>λ恒成立,
∵m+n=3k,且m≠n,
∴$\frac{{m}^{2}+{n}^{2}}{{k}^{2}}$=$\frac{{9(m}^{2}+{n}^{2})}{{(m+n)}^{2}}$=$\frac{9}{1+\frac{2mn}{{m}^{2}+{n}^{2}}}$>$\frac{9}{2}$,
∴$λ≤\frac{9}{2}$,
即实数λ的最大值为$\frac{9}{2}$;
(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:
设整数集合A={x|x=(-1)n•Fn,n∈N*,n≥2},其中{Fn}为斐波那契数列,
即F1=F2=1,Fn+2=Fn+Fn+1,n∈N*,
下证:整数集合A既是自生集又是N*的基底集,
①由Fn=Fn+2-Fn+1得:(-1)n•Fn=(-1)n+2•Fn+2+(-1)n+1•Fn+1,
故A是自生集;
②对于任意n≥2,对于任一正整数t∈[1,F2n+1-1],存在集合Ar一个有限子集{a1,a2,…,am},
使得t=a1+a2+…+am,(|ai<F2n+1,i=1,2,…,m),
当n=2时,由1=1,2=3+1-2,3=3,4=3+1,知结论成立;
假设结论对n=k时成立,
则n=k+1时,只须对任何整数m∈[F2k+1,F2k+3]讨论,
若m<F2k+2,则m=F2k+2+$\overline{m}$,$\overline{m}$∈(-F2k+1,0),
故$\overline{m}$=-F2k+1+m′,m′∈[1,F2k+1),
由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1的元素的和.
因为m=F2k+2-F2k+1+m′=(-1)2k+2•F2k+2+(-1)2k+1•F2k+1+m′,
所以m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.
若m=F2k+2,则结论显然成立.
若F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),
由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3的元素的和.
所以,当n=k+1时结论也成立;
由于斐波那契数列是无界的,
所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.
因此集合A又是N*的基底集.
点评 本题考查的知识点是新定义“自生集”和“N*的基底集”,双曲线的性质,数列求和,集合的元素,本题综合性强,转化困难,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com