精英家教网 > 高中数学 > 题目详情
(2013•通州区一模)已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
分析:设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.
解答:解:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=-1的距离d2=a2+1;
P到直线l1:4x-3y+6=0的距离d1=
|4a2-6a+6|
5

则d1+d2=a2+1+
4a2-6a+6
5
=
9a2-6a+11
5

当a=
1
3
时,P到直线l1和直线l2的距离之和的最小值为2
故选B
点评:此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•通州区一模)在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2bcosC”是“△ABC是等腰三角形”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)对任意两个实数x1,x2,定义max(x1x2)=
x1x1x2
x2x1x2
若f(x)=x2-2,g(x)=-x,则max(f(x),g(x))的最小值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知圆的直角坐标方程为x2+y2-2y=0.在以原点为极点,x轴正半轴为极轴的极坐标系中,该圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是
(-
1
2
,1]
(-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知圆的方程为x2+y2-2x=0,则圆心坐标为(  )

查看答案和解析>>

同步练习册答案