精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2x,定点A的坐标为(,0).
(1)求抛物线上距点A最近的点P的坐标及相应的距离|PA|;
(2)设B(a,0),求抛物线上的点到点B的距离的最小值d.
【答案】分析:(1)设P(x,y)为抛物线上任一点,进而根据勾股定理可得|PA|2=2+y2利用x的范围求得|PA|的范围
(2)依题意可得)|PB|2=(x-a)2+y2=分析当当a-1≥0和a-1<0时|PB|的最小值,进而可求得d.
解答:解:(1)设P(x,y)为抛物线上任一点,
|PA|2=2+y2=2+2x=2+
∵x∈[0,+∞),∴x=0时,|PA|min=
此时P(0,0).
(2)|PB|2=(x-a)2+y2=(x-a)2+2x=[x-(a-1)]2+2a-1(x≥0).
①当a-1≥0,即a≥1时,
在x=a-1时,|PB|min2=2a-1;
②当a-1<0,即a<1时,在x=0时,
|PB|min2=a2,故d=
点评:本题主要考查抛物线的应用.综合了函数的定义域和值域的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2x,设点A的坐标为(
2
3
,0),则抛物线上距点A最近的点P的坐标为(  )
A、(0,0)
B、(0,1)
C、(1,0)
D、(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知抛物线y2=2x.
(1)在抛物线上任取二点P1(x1,y1),P2(x2,y2),经过线段P1P2的中点作直线平行于抛物线的轴,和抛物线交于点P3,证明△P1P2P3的面积为
116
|y1-y2|3

(2)经过线段P1P3、P2P3的中点分别作直线平行于抛物线的轴,与抛物线依次交于Q1、Q2,试将△P1P3Q1与△P2P3Q2的面积和用y1,y2表示出来;
(3)仿照(2)又可做出四个更小的三角形,如此继续下去可以做一系列的三角形,由此设法求出线段P1P2与抛物线所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2x,设A,B是抛物线上不重合的两点,且
OA
OB
OM
=
OA
+
OB
,O为坐标原点.
(1)若|
OA
|=|
OB
|
,求点M的坐标;
(2)求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2x,过抛物线的焦点F的直线与抛物线相交于A、B两点,自A、B向准线作垂线,垂足分别为A1、A2,A1F=3,A2F=2,则A1A2=
13
13
..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2x,
(1)设点A的坐标为(
23
,0)
,求抛物线上距离点A最近的点P的坐标及相应的距离|PA|;
(2)在抛物线上求一点P,使P到直线x-y+3=0的距离最短,并求出距离的最小值.

查看答案和解析>>

同步练习册答案