精英家教网 > 高中数学 > 题目详情
1.观察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此规律,第100个等式12-22+32-42+…-1002=-5050.

分析 观察可得:等式的左边是连续正整数的平方差相加的形式,根据这一规律得第100个等式左边为12-22+32-42+…+992-1002,利用分组求和法、等差数列的前n项和公式求出左边式子的和.

解答 解:观察下列等式:
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10 …
当n=100时,左边=(12-22)+(32-42)+…+[(99)2-1002]
=-(3+7+11+…+199)=-$\frac{50(3+199)}{2}$=-5050,
故答案为:-5050.

点评 本题考查了归纳推理,以及分组求和法、等差数列的前n项和公式的应用,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下面是一个2×2列联表
 y1y2总计
x1a2271
x242529
总计b47100
则a-b的值为(  )
A.-4B.4C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.海曲市某中学的一个社会实践调查小组,在对中学生的良好“光盘习惯”的调查中,随机发放了120份问卷,对回收的100份有效问卷进行统计,得到如下2×2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(Ⅰ)现已按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,若从这9份问卷中随机抽取4份,并记录其中能做到光盘的问卷的份数为ξ,试求随机变量ξ的分布列和数学期望;
(Ⅱ)如果认为良好“光盘行动”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量Χ$\begin{array}{l}2\\{\;}\end{array}=\frac{{n(n\begin{array}{l}{\;}\\{11}\end{array}n\begin{array}{l}{\;}\\{22}\end{array}-n\begin{array}{l}{\;}\\{12}\end{array}n\begin{array}{l}{\;}\\{21}\end{array})\begin{array}{l}2\\{\;}\end{array}}}{{n\begin{array}{l}{\;}\\{1+}\end{array}n\begin{array}{l}{\;}\\{2+}\end{array}n\begin{array}{l}{\;}\\{+1}\end{array}n\begin{array}{l}{\;}\\{+2}\end{array}}},其中n=n\begin{array}{l}{\;}\\{11}\end{array}+n\begin{array}{l}{\;}\\{12}\end{array}+n\begin{array}{l}{\;}\\{21}\end{array}+n\begin{array}{l}{\;}\\{22}\end{array}$.
独立性检验临界值表:
P(X2≥k0)  
0.25
 
0.15
 
0.10
 
0.05
 
0.025
k0 
1.323
 
2.072
 
2.706
 
3841
 
5.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1,CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ex-ln(x+m).x=0是f(x)的极值点,则m=1,函数的增区间为(0,+∞)减区间为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,…一直数到2016时,对应的指头是(  )
A.小指B.中指C.食指D.大拇指

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面上有两个定点A、B,任意放置5个点C1、C2、C3、C4、C5,使其与A、B两点均不重合,如果存在Ci、Cj(i>j,i,j∈{1,2,3,4,5})使不等式|sin∠ACiB-sin∠ACjB|≤$\frac{1}{4}$成立,则称(Ci,Cj))为一个点对,则这样的点对(  )
A.不存在B.至少有1对C.至多有1对D.恰有1对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(n+1)=$\frac{2f(n)}{f(n)+2}$,f(1)=1(n∈N*),猜想f(n)的表达式为f(n)=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC 中,角 A、B、C 所对的边分别为a、b、c,且满足c=2$\sqrt{3}$,c cos B+( b-2a )cos C=0.
(1)求角 C 的大小;
(2)求△ABC 面积的最大值.

查看答案和解析>>

同步练习册答案