精英家教网 > 高中数学 > 题目详情
6.函数f(x)=x+$\sqrt{1-x}$的单调减区间为[$\frac{3}{4}$,1].

分析 先求函数的定义域,然后求函数的导数,利用函数单调性和导数之间的关系解不等式f′(x)<0,进行求解即可.

解答 解:由1-x≥0得x≤1,即函数的定义域为(-∞,1],
则函数的导数f′(x)=1-$\frac{1}{2(1-x)^{\frac{1}{2}}}$=1-$\frac{1}{2\sqrt{1-x}}$,
由f′(x)<0得1-$\frac{1}{2\sqrt{1-x}}$<0,
即$\frac{1}{2\sqrt{1-x}}$>1,
即$\frac{1}{4(1-x)}>1$,即1-x<$\frac{1}{4}$,则x>$\frac{3}{4}$,
∵x≤1,
∴$\frac{3}{4}$<x≤1,
即函数的单调递减区间为[$\frac{3}{4}$,1].
故答案为:[$\frac{3}{4}$,1]

点评 本题主要考查函数单调性的判断,求函数的定义域和导数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知p:“当x∈R时,不等式x2+mx+$\frac{m}{2}$+2≥0恒成立”;q:“抛物线y2=2mx(m>0)的焦点到其顶点的距离大于$\frac{1}{2}$”.若p∨q是真命题,p∧q是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,t),且$\overrightarrow{a}∥\overrightarrow{b}$,则实数t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在0°-360°的范围内,与-510°终边相同的角是(  )
A.330°B.210°C.150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把-1485°转化为α+k•360°(0°≤α<360°,k∈Z)的形式是(  )
A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在古代中国的《张丘建算经》(北魏时期)中记载:“今有女不善织,日减功迟,初日织5尺,末日织1尺,今30日织讫.”问:此女共织90尺.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,则方程f(f (x) )=2的解是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-15x的某个零点所在的一个区间是(  )
A.(-2,0)B.(-1,1)C.(0,2)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}(n=1,2,3,…,2014),圆C1:x2+y2-4x-4y=0,圆C2:x2+y2-2anx-2a2015-ny=0,若圆C2平分圆C1的周长,则{an}的所有项的和为(  )
A.4028B.4026C.2014D.2013

查看答案和解析>>

同步练习册答案