精英家教网 > 高中数学 > 题目详情
设a为函数f(x)=x2+2α
1-x2
2-6α+13,设t=
1-x2

(1)求t的取值范围并将f(x)表示为关于t的函数g(t);
(2)求函数g(t)的最大值m,用a表示.
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:(1)由t=
1-x2
可得0≤t≤1;从而求g(t)=1-t2+2at+α2-6α+13=-(t-a)2+2a2-6a+14,t∈[0,1];
(2)由g(t)=-(t-a)2+2a2-6a+14,t∈[0,1]讨论a以确定函数的最大值,从而写出最大值.
解答: 解:(1)t=
1-x2
,则0≤t≤1;
x2=1-t2
则g(t)=1-t2+2at+α2-6α+13
=-(t-a)2+2a2-6a+14,t∈[0,1];
(2)g(t)=-(t-a)2+2a2-6a+14,t∈[0,1];
当a≤0时,gmax(t)=g(0)=a2-6a+14,
当0<a<1时,gmax(t)=g(a)=2a2-6a+14,
当a≥1时,gmax(t)=g(1)=α2-4α+13.
故gmax(t)=
a2-6a+14,a≤0
2a2-6a+14,0<a<1
a2-4a+13,a≥1
点评:本题考查了换元法的应用及分段函数的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当
2
k1k2
+ln|k1|+ln|k2|
最小时,双曲线离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“若k>0,则方程x2+2x-k=0有实数根”,命题q:“若x+y≠8,则x≠2或y≠6”,则p∧q是
 
命题.(填“真”或“假”).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,若a2-c2=2b,且sinB=6cosAsinC,则b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:f1(x)=x2+1,f2(x)=x3,f3(x)=
ln|x|
x
,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列,并求其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x2-3)=loga
x2
6-x2
(a>1且a≠1).
(1)求函数f(x)的解析式及其定义域;
(2)判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体的三视图如图所示,则该四面体的四个面中最大的面积是(  )
A、
3
2
B、
2
2
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
nx2+2
3x+m
是奇函数,且f(2)=
5
3

(1)求实数m和n的值;
(2)判断函数f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是(  )
A、至多有一次中靶
B、两次都中靶
C、只有一次中靶
D、两次都不中靶

查看答案和解析>>

同步练习册答案