精英家教网 > 高中数学 > 题目详情
18.计算:1+lg22+lg5•lg20的值为2.

分析 利用对数性质、运算法则和完全平方和公式求解.

解答 解:1+lg22+lg5•lg20
=1+lg22+lg5•(lg5+2lg2)
=1+lg22+lg25+2lg2lg5
=1+(lg2+lg5)2
=2.
故答案为:2.

点评 本题考查对数式的化简求值,是基础题,解题时要认真审题,注意对数的性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则几何体的体积是(  )
A.$\frac{7π}{6}$B.$\frac{5π}{6}$C.$\frac{5π}{3}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\vec a$,$\vec b$满足$\vec a$=$(-2sinx,\sqrt{3}(cosx+sinx))$,$\vec b$=(cosx,cosx-sinx),函数f(x)=$\vec a$•$\vec b$(x∈R).
(Ⅰ)将f(x)化成Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的形式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ) 求函数f(x)在$x∈[0,\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{bn}满足b1=1,b4=7.设cn=$\frac{1}{bnbn+1}$,数列{cn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列各式的值.
(Ⅰ)设${x}^{\frac{1}{2}}+{x}^{{-}^{\frac{1}{2}}}=3$,求x+x-1
(Ⅱ)(lg2)2+lg5•lg20+($\root{3}{2}×\sqrt{3})^{6}+(2\frac{1}{4})^{\frac{1}{2}}-0.{3}^{0}-1{6}^{-\frac{3}{4}}$6+$(2\frac{1}{4})^{\frac{1}{2}}$-0.30-$1{6}^{{-}^{\frac{3}{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列4个命题是真命题的是(  )
①“若x2+y2=0,则x、y均为零”的逆命题
②“相似三角形的面积相等”的否命题
③“若A∩B=A,则A⊆B”的逆否命题
④“末位数字不是零的数可被3整除”的逆否命题.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若“?x∈[0,$\frac{π}{4}$],m≥tanx”是真命题,则实数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中能用二分法求零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式-2x2+x+1<0的解集是(  )
A.(-$\frac{1}{2}$,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

同步练习册答案