精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2cos
x
2
,tan(
x
2
+
π
4
)),
b
=(
2
sin(
x
2
+
π
4
),tan(
x
2
-
π
4
))
,令f(x)=
a
b
.求函数f(x)的最大值,最小正周期,并写出
f(x)在[0,π]上的单调区间.
分析:利用向量的数量积公式求出f(x),利用两角和、差的正弦、正切公式、二倍角公式化简三角函数为y=Asin(?x+φ)+k形式;
利用三角函数的有界性、最小正周期公式、利用整体代换求出单调性.
解答:解:f(x)=
a
b
=2
2
cos
x
2
sin(
x
2
+
π
4
)+tan(
x
2
+
π
4
)tan(
x
2
-
π
4
)
=2
2
cos
x
2
(
2
2
sin
x
2
+
2
2
cos
x
2
)+
1+tan
x
2
1-tan
x
2
tan
x
2
-1
1+tan
x
2
=2sin
x
2
cos
x
2
+2cos2
x
2
-1
=sinx+cosx=
2
sin(x+
π
4
).

x=
π
4
时,f(x)|max=f(
π
4
)=
2

最小正周期为T=2π,f(x)在[0,
π
4
]
是单调增加,在[
π
4
,π]
是单调减少.
点评:本题考查向量与三角结合、考查向量的数量积公式、三角函数的和、差角公式、二倍角公式;三角函数的周期公式、三角函数的有界性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,cos2x),
b
=(sinx,1)
,令f(x)=
a
b

(Ⅰ) 求 f (
π
4
)的值;
(Ⅱ)求x∈[-
π
2
π
2
]
时,f (x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx+1,cos2x-sinx+1)
b
=(cosx, -1)
,定义f(x)=
a
b

(1)求函数f(x)的最小正周期和单调递减区间;
(2)求函数f(x)在区间[0,π]上的最大值及取得最大值时的x.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆二模)已知向量
a
=(2cosx,-2)
b
=(cosx,
1
2
)
f(x)=
a
b
,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,
3
sinx)
b
=(cosx,2cosx)
,设函数f(x)=
a
b

(1)求函数f(x)的单调递增区间.
(2)若x∈[0,
π
2
]
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosx,
3
sinx),
b
=(cosx,2cosx)
,若f(x)=
a
b

(1)求函数f(x)的周期及对称轴的方程;
(2)若x∈[
π
12
π
3
]
,试求f(x)的值域.

查看答案和解析>>

同步练习册答案