精英家教网 > 高中数学 > 题目详情
(2012•西城区一模)如图,抛物线y=-x2+9与x轴交于两点A,B,点C,D在抛物线上(点C在第一象限),CD∥AB.记|CD|=2x,梯形ABCD面积为S.
(Ⅰ)求面积S以x为自变量的函数式;
(Ⅱ)若
|CD||AB|
≤k
,其中k为常数,且0<k<1,求S的最大值.
分析:(Ⅰ)依题意,确定点C的纵坐标、点B的横坐标,从而利用梯形的面积公式,即可求得S关于x的函数式;
(Ⅱ)先确定函数关系式,再求导数,利用分类讨论的数学思想,确定函数的单调性,从而可求S的最大值.
解答:解:(Ⅰ)依题意,点C的横坐标为x,点C的纵坐标为yC=-x2+9.…(1分)
点B的横坐标xB满足方程-
x
2
B
+9=0
,解得xB=3,舍去xB=-3. …(2分)
所以S=
1
2
(|CD|+|AB|)•yC=
1
2
(2x+2×3)(-x2+9)=(x+3)(-x2+9)
.…(4分)
由点C在第一象限,得0<x<3.
所以S关于x的函数式为 S=(x+3)(-x2+9),0<x<3.…(5分)
(Ⅱ)由 
0<x<3
x
3
≤k
及0<k<1,得0<x≤3k.  …(6分)
记f(x)=(x+3)(-x2+9),0<x≤3k,
则f'(x)=-3x2-6x+9=-3(x-1)(x+3).  …(8分)
令f'(x)=0,得x=1.      …(9分)
①若1<3k,即
1
3
<k<1
时,f'(x)与f(x)的变化情况如下:
x (0,1) 1 (1,3k)
f'(x) + 0 -
f(x) 极大值
所以,当x=1时,f(x)取得最大值,且最大值为f(1)=32.…(11分)
②若1≥3k,即0<k≤
1
3
时,f'(x)>0恒成立,
所以,f(x)的最大值为f(3k)=27(1+k)(1-k2).         …(13分)
综上,
1
3
≤k<1
时,S的最大值为32;0<k<
1
3
时,S的最大值为27(1+k)(1-k2).
点评:本题考查函数模型的构建,考查利用导数知识解决最大值问题,考查分类讨论的数学思想,正确分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•西城区一模)已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中ak∈{0,1,2}(k=0,1,2,3),且a3≠0.则A中所有元素之和等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)若a=log23,b=log32,c=log46,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)在△ABC中,已知2sinBcosA=sin(A+C).
(Ⅰ)求角A;
(Ⅱ)若BC=2,△ABC的面积是
3
,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(Ⅰ)求甲以4比1获胜的概率;
(Ⅱ)求乙获胜且比赛局数多于5局的概率;
(Ⅲ)求比赛局数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区一模)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=
3
,OM=1,则MN=
1
1

查看答案和解析>>

同步练习册答案