【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点.
(1)求证:PO⊥平面ABCD;
(2)若E为线段PA上一点,且 ,求二面角P﹣OE﹣C的余弦值.
【答案】
(1)证明:设F为DC的中点,连接BF,则DF=AB,
∵AB⊥AD,AB=AD,AB∥DC,
∴四边形ABFD为正方形,
∵O为BD的中点,∴O为AF,BD的交点,
∵PD=PB=2,∴PO⊥BD,
∵BD= = =2 ,
∴PO= = = ,AO= ,
在三角形PAO中,PO2+AO2=PA2=4,∴PO⊥AO,
∵AO∩BD=O,∴PO⊥平面ABCD.
(2)解:由(1)知PO⊥平面ABCD,又AB⊥AD,
∴过O分别做AD,AB的平行线,以它们做x,y轴,以OP为z轴,
建立如图所示的空间直角坐标系,
由已知得:A(﹣1,﹣1,0),B(﹣1,1,0),D(1,﹣1,0),
F(1,1,0),C(1,3,0),P(0,0, ),O(0,0,0),
设E(a,b,c),∵ ,∴(a+1,b+1,c)=( ),
∴ ,解得 ,∴E(﹣ ,﹣ , ),
=(﹣ ,﹣ , ), =(0,0, ), =(1,3,0)
设平面OPE的法向量 =(x,y,z),
则 ,取x=1,得 =(1,﹣1,0),
设平面OEC的法向量 =(a,b,c),
则 ,取a=3,得 =(3,﹣1,2 ),
设二面角P﹣OE﹣C的平面角为θ,
则cosθ=|cos< , >|= = = .
∴二面角P﹣OE﹣C的余弦值为 .
【解析】(1)设F为DC的中点,连接BF,推导出四边形ABFD为正方形,PO⊥BD,PO⊥AO,由此能证明PO⊥平面ABCD.(2)过O分别做AD,AB的平行线,以它们做x,y轴,以OP为z轴,建立空间直角坐标系,利用向量法能求出二面角P﹣OE﹣C的余弦值.
【考点精析】掌握直线与平面垂直的判定是解答本题的根本,需要知道一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ 是奇函数.
(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;
(2)写出函数f(x)的单调区间(不要解答过程,只写结果);
(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP的面积为2,若这样的点P恰好有4个,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在无穷数列{an}中,a1=p是正整数,且满足 (Ⅰ)当a3=9时,给出p的值;(结论不要求证明)
(Ⅱ)设p=7,数列{an}的前n项和为Sn , 求S150;
(Ⅲ)如果存在m∈N* , 使得am=1,求出符合条件的p的所有值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知n次多项式 ,在求fn(x0)值的时候,不同的算法需要进行的运算次数是不同的.例如计算 (k=2,3,4,…,n)的值需要k﹣1次乘法运算,按这种算法进行计算f3(x0)的值共需要9次运算(6次乘法运算,3次加法运算).现按如图所示的框图进行运算,计算fn(x0)的值共需要次运算.( )
A.2n
B.2n
C.
D.n+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为 ,以原点为圆心,椭圆的短半轴为半径的圆与直线 相切.
(1)求椭圆的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=2,AA1=3,D为BC中点,
(1)证明:A1C∥平面B1AD;
(2)求二面角B1﹣AD﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的焦距为2,且过点P(1, )
(1)椭圆C的方程;
(2)设椭圆C的左右焦点分别为F1 , F2 , 过点F2的直线l与椭圆C交于M,N两点.
①当直线l的倾斜角为45°时,求|MN|的长;
②求△MF1N的内切圆的面积的最大值,并求出当△MF1N的内切圆的面积取最大值时直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com