精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 共线,求边长b和c的值.

【答案】
(1)解:由题意知f(x)= =2cos2x﹣ sin2x=1+cos2x﹣ sin2x=1+2cos(2x+ ).

则函数f(x)的最小正周期T= =π,

,得

则f(x)的单调递减区间[kπ﹣ ,kπ﹣ ],k∈Z


(2)解:∵ ,∴ ,又

,即

,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc.

因为向量 共线,所以2sinB=3sinC,

由正弦定理得2b=3c.∴


【解析】(1)根据向量数量积的公式进行化简,结合三角函数的辅助角公式进行转化求解即可.(2)根据条件先求出A的大小,结合余弦定理以及向量共线的坐标公式进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若 =1,则| |=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为(
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是抛物线形拱桥,当水面在l时,拱顶离水面4米,水面宽8米.水位上升1米后,水面宽为(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,求曲线处的切线方程;

(2)若当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,设点F(1,0),直线l:x=﹣1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x2-12|的定义域为[0,m],值域为[0,am2],则实数a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)求直线l与圆C相交的弦长.

查看答案和解析>>

同步练习册答案